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FOREWORD TO THE ENGLISH EDITION

It is an unusual pleasure to present Professor Heisen-
berg’s Chicago lectures on “The Physical Principles of
the Quantum Theory” to a wider audience than could
attend them when they were originally delivered Pro-
fessor Heisenberg’s leading place in the development of
the new quantum mechanics is well recognized by those
who have been following its growth. It was in fact he who
first saw clearly that in the older forms of quantum theory
we were describing our spectra in terms of atomic mecha-
nisms regarding which we could gain no definite knowl-
edge, and who first found a way to interpret (or at least
describe) spectroscopic phenomena without assuming
the existence of such atomic mechanisms. Likewise, “the
uncertainty principle’” has become a household phrase
throughout our universities, and it is especially fortunate
to have this opportunity of learning its significance from
one who is responsible for its formulation.

The power of the new quantum mechanics in giving us
a better understanding of events on an atomic scale is
becoming increasingly evident. The structure of the
helium atom, the existence of half-quantum numbers in
band spectra, the continuous spatial distribution of
photo-electrons, and the phenomenon of radioactive dis-
integration, to mention only a few examples, are achieve-
ments of the new theory which had baffled the old. While
the writing of this chapter of the history of physics is



PREFACE

placed on the complete equivalence of the corpuscular
and wave concepts, which is clearly reflected in the newer
formulations of the mathematical theory. This symmetry
of the book with respect to the words “particle” and
“wave”’ shows that nothing is gained by discussing funda-
mental problems (such as causality) in terms of one
rather than the other. I have also attempted to make the
distinction between waves in space-time and the Schro-
dinger waves in configuration space as clear as possible.

On the whole the book contains nothing that is not to
be found in previous publications, particularly in the in-
vestigations of Bohr. The purpose of the book seems to
me to be fulfilled if it contributes somewhat to the dif-
fusion of that “Kopenhagener Geist der Quantentheorie,”
if I may so express myself, which has directed the entire
development of modern atomic physics.

My thanks are due in the first place to Drs. C. Eckart
and F. Hoyt, of the University of Chicago, who have
taken on themselves not only the labor of preparing
the English translation, but have also contributed essen-
tially to the improvement of the book by working over
several sections and giving me the benefit of their advice.
I am also indebted to Dr. G. Beck for reading proof of
the German edition and for valuable assistance in the
preparation of the manuscript.

W. HEISENBERG
LErezic
March 3, 1930
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CHAPTER I
INTRODUCTORY

§I. THEORY AND EXPERIMENT

The experiments of physics and their results can be
described in the language of daily life. Thus if the physi-
cist did not demand a theory to explain his results and
could be content, say, with a description of the lines ap-
pearing on photographic plates, everything would be
simple and there would be no need of an epistemological
discussion. Difficulties arise only in the attempt to
classify and synthesize the results, to establish the rela-
tion of cause and effect between them—in short, to con-
struct a theory. This synthetic process has been applied
not only to the results of scientific experiment, but, in the
course of ages, also to the simplest experiences of daily
life, and in this way all concepts have been formed. In the
process, the solid ground of experimental proof has often
been forsaken, and generalizations have been accepted un-
critically, until finally contradictions between theory and
experiment have become apparent. In order to avoid
these contradictions, it seems necessary to demand that
no concept enter a theory which has not been experimen-
tally verified at least to the same degree of accuracy as the
experiments to be explained by the theory. Unfortunate-
ly it is quite impossible to fulfil this requirement, since
the commonest ideas and words would often be excluded.
To avoid these insurmountable difficulties it is found ad-

I



2 PRINCIPLES OF QUANTUM THEORY

visable to introduce a great wealth of concepts into a
physical theory, without attempting to justify them rigor-
ously, and then to allow experiment to decide at what
points a revision is necessary.

Thus it was characteristic of the special theory of rela-
tivity that the concepts ‘“measuring rod” and “clock”
were subject to searching criticism in the light of experi-
ment; it appeared that these ordinary concepts involved
the tacit assumption that there exist (in principle, at
least) signals that are propagated with an infinite veloc-
ity. When it became evident that such signals were not to
be found in nature, the task of eliminating this tacit as-
sumption from all logical deductions was undertaken,
with the result that a consistent interpretation was found
for facts which had seemed irreconcilable. A much more
radical departure from the classical conception of the
world was brought about by the general theory of rela-
tivity, in which only the concept of coincidence in space-
time was accepted uncritically. According to this theory,
ordinary language (i.e., classical concepts) is applicable
only to the description of experiments in which both the
gravitational constant and the reciprocal of the velocity
of light may be regarded as negligibly small.

Although the theory of relativity makes the greatest of
demands on the ability for abstract thought, still it fulfils
the traditional requirements of science in so far as it per-
mits a division of the world into subject and object
(observer and observed) and hence a clear formulation of
the law of causality. This is the very point at which the
difficulties of the quantum theory begin. In atomic phys-
ics, the concepts “clock” and “measuring rod” need no
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immediate consideration, for there is a large field of phe-
nomena in which 1/¢ is negligible. The concepts “space-
time coincidence” and “observation,” on the other hand,
do require a thorough revision. Particularly character-
istic of the discussions to follow is the interaction between
observer and object; in classical physical theories it has
always been assumed either that this interaction is negli-
gibly small, or else that its effect can be eliminated from
the result by calculations based on “control” experi-
ments. This assumption is not permissible in atomic
physics; the interaction between observer and object
causes uncontrollable and large changes in the system
being observed, because of the discontinuous changes
characteristic of atomic processes. The immediate conse-
quence of this circumstance is that in general every ex-
periment performed to determine some numerical quan-
tity renders the knowledge of others illusory, since the un-
controllable perturbation of the observed system alters
the values of previously determined quantities. If this
perturbation be followed in its quantitative details, it ap-
pears that in many cases it is impossible to obtain an
exact determination of the simultaneous values of two
variables, but rather that there is a lower limit to the
accuracy with which they can be known.*

The starting-point of the critique of the relativity
theory was the postulate that there is no signal velocity
greater than that of light. In a similar manner, this lower
limit to the accuracy with which certain variables can be
known simultaneously may be postulated as a law of na-
ture (in the form of the so-called uncertainty relations)

' W. Heisenberg, Zeutschrift fur Physik, 43, 172, 1927.



4 PRINCIPLES OF QUANTUM THEORY

and made the starting-point of the critique which forms
the subject matter of the following pages. These uncer-
tainty relations give us that measure of freedom from the
limitations of classical concepts which is necessary for a
consistent description of atomic processes. The program
of the following considerations will therefore be: first, to
obtain a general survey of all concepts whose introduc-
tion is suggested by the atomic experiments; second, to
limit the range of application of these concepts; and
third, to show that the concepts thus limited, together
with the mathematical formulation of quantum theory,
form a self-consistent scheme.

§2. THE FUNDAMENTAL CONCEPTS OF
QUANTUM THEORY

The most important concepts of atomic physics can be
induced from the following experiments:

a) Wilson* photographs.—The a- and B-rays emitted
by radioactive elements cause the condensation of minute
droplets when allowed to pass through supersaturated
water vapor. These drops are not distributed at random,
but are arranged along definite tracks which, in the case
of a-rays (Fig. 1), are nearly straight lines, in the case of
B-rays, are irregularly curved. The existence of the tracks
and their continuity show that the rays may appropri-
ately be regarded as streams of minute particles moving
at high speeds. As is well known, the mass and charge
of these particles may be determined from the deflection
of the rays by electric and magnetic fields.

* Proceedings of the Royal Society, A, 8s, 285, 1911; see also Jahrbuch
der Radioaktivitat, 10, 34, 1913.
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b) Diffraction of matter waves (Davisson and Germer;*
Thomson? Rupp?).—After the conception of B-rays as
streams of particles had remained unchallenged for more
than fifteen years, another series of experiments was per-

F16. 1.—Tracks of a-particles in Wilson Chamber

formed which indicated that they could be diffracted and
were capable of interference as if they were waves. Typi-
cal of these experiments is that of G. P. Thomson, in
which a narrow beam of artificial B-rays of moderate

* Physical Review, 30, 705, 1927; Proceedings of the National Academy,
14; 317, 1928. C

2 Proceedings of the Royal Society, A, 117, 600, 1928; A, 119, 651, 1928.

3 Annalen der Physik, 83, 981, 1928.
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energy is passed through a thin foil of matter. The foil is
composed of minute crystals oriented at random, but the
atoms in each crystal are regularly arranged. A photo-
graphic plate receiving the emergent rays exhibits rings
of blackening (Fig. 2), as though the rays were waves and
were diffracted by the minute crystals. From the diame-

F1c. 2.—Diffraction of electrons on passing through a thin foil of
matter.

ters of the rings and the structure of the crystals, the
length of these waves may be determined and is found to
be A=//mv, where m is the mass and v the velocity of the
particles as determined by the above-mentioned experi-
ments. Similar experiments were performed by Davisson
and Germer, Kikuchi,* and Rupp.

¢) The diffraction of X-rays—The same dual interpre-
tation is necessary in the case of light and electromag-
netic radiation in general. After Newton’s objections to

t Japanese Journal of Physics, 5, 83, 1928.
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the wave theory of light had been refuted and the phe-
nomena of interference explained by Fresnel, this theory
dominated all others for many years, until Einstein*
pointed out that the experiments of Lenard on the photo-
electric effect could only be explained by a corpuscular
theory. He postulated that the momentum of the hypo-
thetical particles was related to the wave-length of the
radiation by the formula p="7%/\ (cf. § 2b). The necessity
for both interpretations is particularly clear in the case of
X-rays: If a homogeneous beam of X-rays is passed
through a crystalline mass, and the emergent rays re-
ceived on a photographic plate (Fig. 3), the result is much
like the result of G. P. Thomson’s experiment, and it may
be concluded that X-rays are a form of wave motion, with
a determinable wave-length.

d) The Compton-Simon® experiment.—When a beam of
X-rays passes through supersaturated water vapor, it
is scattered by the molecules. Secondary products of
the scattering are the ‘“‘recoil” electrons, which are ap-
parently particles of considerable energy, since they form
tracks of condensed droplets as do the B-rays. These
tracks are not very long, however, and occur with random
direction. They apparently originate within the region
traversed by the primary X-ray beam. Other secondary
products of the scattering are the photoelectrons, which
again make themselves evident by longer tracks of con-
densed water droplets. Under suitable conditions these
tracks originate at points outside the primary X-ray
beam, but the two secondary products are not unrelated.

* Annalen der Physik, 17, 145, 1905.  * Physical Review, 25, 306, 1925.
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If it be assumed that the X-ray beam consists of a stream
of light-particles (photons) and that the scattering process
is the collision of a photon with one of the electrons of
the molecule, as a result of which the electron recoils in
the observed direction, Einstein’s postulate regarding the

Fi16. 3.—Diffraction of X-rays by MgO powder

energy and momentum of the photons enables the direc-
tion of the photon after the collision to be calculated.
This photon then collides with a second molecule, and
gives up its remaining energy to an electron (the photo-
electron). This assumption has been quantitatively ver-
ified (Fig. 4).
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¢) The collision experiments of Franck and Heriz.*—
When a beam of slow electrons with homogeneous ve-
locity passes through a gas, the electronic current as func-
tion of the velocity changes discontinuously at certain
values of the velocity (energy). The analysis of these
experiments leads to the conclusion that the atoms in the

F1c. 4.—Photograph showing recoil electron and associated photo
electron liberated by X-rays. The upper photograph is retouched.

gas can only assume discrete energy values (Bohr’s
postulate). When.the energy of the atom is known, one
speaks of a “stationary state of the atom.” When the
kinetic energy of the electron is too small to change the
atom from its stationary state to a higher one, the elec-
tron makes only elastic collisions with the atoms, but
when the kinetic energy suffices for excitation some elec-
trons will transfer their energy to the atom, so the elec-

* Verhandlungen der Deutschen Physikalische Gesellschaft, 15, 613, 1913.
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tronic current as a function of the velocity changes rapidly
in the critical region. The concept of stationary states,
which is suggested by these experiments, is the most di-
rect expression of the discontinuity in all atomic processes.

From these experiments it is seen that both matter and
radiation possess a remarkable duality of character, as
they sometimes exhibit the properties of waves, at other
times those of particles. Now it is obvious that a thing
cannot be a form of wave motion and composed of par-
ticles at the same time—the two concepts are too differ-
ent. It is true that it might be postulated that two sepa-
rate entities, one having all the properties of a particle,
and the other all the properties of wave motion, were
combined in some way to form “light.” But such theories
are unable to bring about the intimate relation between
the two entities which seems required by the experimental
evidence. As a matter of fact, it is experimentally certain
only that light sometimes behaves as if it possessed some
of the attributes of a particle, but there is no experiment
which proves that it possesses all the properties of a
particle; similar statements hold for matter and wave mo-
tion. The solution of the difficulty is that the two mental
pictures which experiments lead us to form—the one of
particles, the other of waves—are both incomplete and
have only the validity of analogies which are accurate
only in limiting cases. It is a trite saying that “analogies
cannot be pushed too far,” yet they may be justifiably
used to describe things for which our language has no
words. Light and matter are both single entities, and the
apparent duality arises in the limitations of our language.
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It is not surprising that our language should be inca-
pable of describing the processes occurring within the
atoms, for, as has been remarked, it was invented to de-
scribe the experiences of daily life, and these consist only
of processes involving exceedingly large numbers of
atoms. Furthermore, it is very difficult to modify our
language so that it will be able to describe these atomic
processes, for words can only describe things of which we
can form mental pictures, and this ability, too, is a result
of daily experience. Fortunately, mathematicsis not sub-
ject to this limitation, and it has been possible to invent
a mathematical scheme—the quantum theory—which
seems entirely adequate for the treatment of atomic proc-
esses; for visualization, however, we must content our-
selves with two incomplete analogies—the wave picture
and the corpuscular picture. The simultaneous applicabil-
ity of both pictures is thus a natural criterion to determine
how far each analogy may be ‘“pushed” and forms an
obvious starting-point for the critique of the concepts
which have entered atomic theories in the course of their
development, for, obviously, uncritical deduction of con-
sequences from both will lead to contradictions. In this
way one obtains the limitations of the concept of a parti-
cle by considering the concept of a wave. As N. Bohr*
has shown, this is the basis of a very simple deriva-
tion of the uncertainty relations between co-ordinate and
momentum of a particle. In the same manner one may.
derive the limitations of the concept of a wave by com-
parison with the concept of a particle.

It must be emphasized that this critique cannot be car-

* Nature, 121, 580, 1928; Naturwissenschaften, 16, 245, 1928.
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ried through entirely without using the mathematical
apparatus of the quantum theory, for the development of
the latter preceded the clarification of the physical prin-
ciples in the historic sequence. In order to avoid obscur-
ing the essential relationships by too much mathematics,
however, it has seemed advisable to relegate this formal-
ism to the Appendix. The exposition of mathematical
principles given there does not pretend to be complete,
but only to furnish the reader with those formulas which
are essential for the argument of the text. References to
this Appendix are given as A (16), etc.



CHAPTER 1II

CRITIQUE OF THE PHYSICAL CONCEPTS
OF THE CORPUSCULAR THEORY
OF MATTER

§ I. THE UNCERTAINTY RELATIONS

The concepts of velocity, energy, etc., have been de-
veloped from simple experiments with common objects,
in which the mechanical behavior of macroscopic bodies
can be described by the use of such words. These same
concepts have then been carried over to the electron,
since in certain fundamental experiments electrons show
a mechanical behavior like that of the objects of common
experience. Since it is known, however, that this similar-
ity exists only in a certain limited region of phenomena,
the applicability of the corpuscular theory must be limited
in a corresponding way. According to Bohr,* this restric-
tion may be deduced from the principle that the processes
of atomic physics can be visualized equally well in terms
of waves or particles. Thus the statement that the posi-
tion? of an electron is known to within a certain accuracy
Ax at the time ¢ can be visualized by the picture of a wave
packet in the proper position with an approximate exten-
sion Ax. By “wave packet” is meant a wavelike dis-
turbance whose amplitude is appreciably different from

* N. Bohr, Nature, 121, 580, 1928.

2 The following considerations apply equally to any of the three space
co-ordinates of the electron, therefore only one is treated explicitly.

13



14 PRINCIPLES OF QUANTUM THEORY

zero only in a bounded region. This region is, in general,
in motion, and also changes its size and shape, i.e., the
disturbance spreads. The velocity of the electron cor-
responds to that of the wave packet, but this latter cannot
be exactly defined, because of the diffusion which takes
place. This indeterminateness is to be considered as an
essential characteristic of the electron, and not as evi-
dence of the inapplicability of the wave picture. Defining
momentum as p,=pv, (where p=mass of electron, v,=
x-component of velocity), this uncertainty in the velocity
causes an uncertainty in p, of amount Ap.; from the
simplest laws of optics, together with the empirically
established law A=/%/p, it can readily be shown that

AxAp, =k . (1)

Suppose the wave packet made up by superposition of
plane sinusoidal waves, all with wave-lengths near X.
Then, roughly speaking, #=Ax/\, crests or troughs fall
within the boundary of the packet. Outside the boundary
the component plane waves must cancel by interference;
this is possible if, and only if, the set of component waves
contains some for which at least #+1 waves fall in the
critical range. This gives

Ax

— >
N AN T

where A\ is the approximate range of wave-lengths nec-
essary to represent the packet. Consequently

AxAN ' (2)

N
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On the other hand, the group velocity of the waves (i.e.,
the velocity of the packet) is by A (85)

h
vg:;i—o H (3)

so that the spreading of the packet is characterized by
the range of velocities

h
A’I)g:'—;)\—z AN .

By definition Ap,=puAy, and therefore by equation (2),

AxAp=h .

This uncertainty relation specifies the limits within
which the particle picture can be applied. Any use of the
words “position” and “velocity’’ with an accuracy exceed-
ing that given by equation (1) is just as meaningless as the
use of words whose sense is not defined.

The uncertainty relations can also be deduced without
explicit use of the wave picture, for they are readily ob-
tained from the mathematical scheme of quantum theory

* In this connection one should particularly remember that the human
language permits the construction of sentences which do not involve any
consequences and which therefore have no content at all—in spite of the
fact that these sentences produce some kind of picture in our imagination;
e.g., the statement that besides our world there exists another world,
with which any connection is impossible in principle, does not lead to any
experimental consequence, but does produce a kind of picture in the mind.
Obviously such a statement can neither be proved nor disproved. One
should be especially careful in using the words “reality,” “actually,” etc.,
since these words very often lead to statements of the type just men-
tioned.
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and its physical interpretation,* Any knowledge of the
co-ordinate ¢ of the electron can be expressed by a prob-
ability amplitude S(g), |S(¢')|°d¢’ being the probability
of finding the numerical value of the co-ordinate of the
electron between ¢’ and ¢'+dg’. Let

7=Jq1S(d" |*dq @
be the average value of g. Then Ag defined by
(Agy=2f(¢'—7)S(q) [*dg (s)

can be called the uncertainty in the knowledge of the elec-
tron’s position. In an exactly analogous way |T'(p")|*dp’
gives the probability of finding the momentum of the
electron between p’ and p’+dp’; again p and Ap may be

defined as
=0 IT(p)|%dp’, (6)

(Ap)yr=2f(p'—3)*| T(p)|%dp" . ()

By equation A(169), the probability amplitudes are

related by the equations
T(p)=fSW@)R(P)dq } ®
S(¢)=fTR*(d'p)ap"

where R(g'p’) is the matrix of the transformation from a
Hilbert space in which ¢ is a diagonal matrix to one in
which p is diagonal. From equation A(41) we have

J2(¢d)R(('p)dg" = [R(¢p")p(p"p)ap"

* Kennard, Zeitschrift fur Physik, 44, 326, 1927.
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and by equation A(42) this is equivalent to

9 R =R, (o)

2mi oq'

whose solution is

2x7 ,

R=ce? °%. (10)

Normalizing gives ¢ the value 1/ V' h. The values of Ap,
Ag are thus not independent. To simplify further calcu-
lations, we introduce the following abbreviations:

x=q¢'—-7q, y=t'—p,
27t o

s@)=S@g)er ™, (1)

t(y) - T(p')e_T W’ -7 )

Then equations (5) and (7) become
(Ag)=2f2|s(x)|dz, (sa)

(Ap)y=2fy|t(y)|"dy, (70)

while equations (8) become

1) =1—/£}—; s(e? iz,

27t (80)
s(x) =1—/I_Z ty)e * “dy.
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Combining (5a), (7a), and (8a), the expression for (Ap)?
may be transformed, giving

jopr=-> f i (y)dy f s@er Vdx,
2 thzy
f t*(y)dy f — ~ dx ,
_ I (RN ds oy
*1/],(271-2) ft (y)dyjdxze dx
AN N5
- <27ri) fs () dx? dz

or
o= | %[ 0 (x2)
Now
ds 2
|2 st g el
@, (3)

(Aq)“
as may be proved by rearranging the obvious relation

(130)

G It

Hence it follows from equation (12) that
hz

1 2>1 T .___I__
'i(AP) 23 4 (Aq)z ) l
J (14)

or
h
>

ApAg=——
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which was to be proved. The equality can be true in (14)
only when the left side of (13a) vanishes, i.e., when

2
s(x) =ce 28”
or (15)

(¢ =72 _2mi .,

S(gy=ce” =G> " n ™

where ¢ is an arbitrary constant. Thus the Gaussian prob-
ability distribution causes the product ApAq to assume
its minimum value.

It must be emphasized again that this proof does not
differ at all in mathematical content from that given at
the beginning of this section on the basis of the duality be-
tween the wave and corpuscular pictures of atomic phe-
nomena. The first proof, if carried through precisely,
would also involve all the equations (4)-(14). Physical-
ly, the last proof appears to be more general than the
former, which was proved on the assumption that ¥ was
a cartesian co-ordinate and applies specifically only to
free electrons because of the relation A=/4/uv, which
enters into the proof. Equation (14), on the other hand,
applies to any pair of canonic conjugates p and ¢. This
greater generality of (14) is rather specious, however. As
Bohr™ has emphasized, if a measurement of its co-ordinate
is to be possible at all, the electron must be practically
free.

t Loc. cit.
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§ 2. ILLUSTRATIONS OF THE UNCERTAINTY RELATIONS

The uncertainty principle refers to the degree of inde-
terminateness in the possible present knowledge of the
simultaneous values of various quantities with which the
quantum theory deals; it does not restrict, for example,
the exactness of a position measurement alone or a veloc-
ity measurement alone. Thus suppose that the velocity
of a free electron is precisely known, while the position is
completely unknown. Then the principle states that
every subsequent observation of the position will alter the
momentum by an unknown and undeterminable amount
such that after carrying out the experiment our knowl-
edge of the electronic motion is restricted by the uncer-
tainty relation. This may be expressed in concise and gen-
eral terms by saying that every experiment destroys some
of the knowledge of the system which was obtained by
previous experiments. This formulation makes it clear
that the uncertainty relation does not refer to the past;
if the velocity of the electron is at first known and the
position then exactly measured, the position for times
previous to the measurement may be calculated. Then
for these past times ApAg is smaller than the usual limit-
ing value, but this knowledge of the past is of a purely
speculative character, since it can never (because of the
unknown change in momentum caused by the position
measurement) be used as an initial condition in any calcu-
lation of the future progress of the electron and thus can-
not be subjected to experimental verification. It is a mat-
ter of personal belief whether such a calculation concern-
ing the past history of the electron can be ascribed any
physical reality or not.
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a) Determination of the position of a free particle—As a
first example of the destruction of the knowledge of a
particle’s momentum by an ap-
paratus determining its position,
we consider the use of a micro-
scope.® Let the particle be moving
at such a distance from the micro-
scope that the cone of rays scat-
tered from it through the objec-
tive has an angular opening e. If €
\ is the wave-length of the light x
illuminating it, then the uncer-
tainty in the measurement of the
x-co-ordinate (see Fig. 5) according to the laws of optics
governing the resolving power of any instrument is:

Ax= A (16)

sin €

FiG. 5

But, for any measurement to be possible at least one
photon must be scattered from the electron and pass
through the microscope to the eye of the observer. From
this photon the electron receives a Compton recoil of
order of magnitude 4/\. The recoil cannot be exactly
known, since the direction of the scattered photon is un-
determined within the bundle of rays entering the micro-
scope. Thus there is an uncertainty of the recoil in the
x-direction of amount

Apzr\% sin €, (x7)

and it follows that for the motion after the experiment

ApAx~h . (18)
*N. Bohr, loc. cit.
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Objections may be raised to this consideration; the
indeterminateness of the recoil is due to the uncertain
path of the light quantum within the bundle of rays, and
we might seek to determine the path by making the
microscope movable and measuring the recoil it receives
from the light quantum. But this does not circumvent
the uncertainty relation, for it immediately raises the
question of the position of the microscope, and its position
and momentum will also be found to be subject to equa-~
tion (18). The position of the microscope need not be con-
sidered if the electron and a fixed scale be simultaneously
observed through the moving microscope, and this seems
to afford an escape from the uncertainty principle. But an
observation then requires the simultaneous passage of at
least two light quanta through the microscope to the
observer—one from the electron and one from the scale—
and a measurement of the recoil of the microscope is no
longer sufficient to determine the direction of the light
scattered by the electron. And so on ad infinitum.

One might also try to improve the accuracy by measur-
ing the maximum of the diffraction pattern produced by
the microscope. This is only possible when many photons
co-operate, and a calculation shows that the error in meas-
urement of « is reduced to Ax=X\/V m sin ¢ when m pho-
tons produce the pattern. On the other hand, each photon
contributes to the unknown change in the electron’s mo-
mentum, the result being Ap, =1 m % sin ¢/\ (addition of
independent errors). The relation (18) is thus not avoided.

It is characteristic of the foregoing discussion that
simultaneous use is made of deductions from the corpuscu-
lar and wave theories of light, for, on the one hand, we
speak of resolving power, and, on the other hand, of
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photons and the recoils resulting from their collision with
the particle under consideration. This is avoided, in so
far as the theory of light is concerned, in the following
considerations.

If electrons are made to pass through a slit of width d
(Fig. 6), then their co-ordinates in the direction of this
width are known at the moment after having passed it
with the accuracy Ax=d. If we assume the momentum
in this direction to have been zero before passing through
the slit (normal incidence), it
would appear that the uncer-
tainty relation is not fulfilled.
But the electron may also be sl
considered to be a plane de d <
Broglie wave, and it is at once v T
apparent that diffraction phe-
nomena are necessarily pro-
duced by the slit. The emergent Fro. 6
beam has a finite angleof diverg-
ence a, which is, by the simplest laws of optics,

(19)

. A
sin a~-

d )

where \ is the wave-length of the de Broglie waves. Thus
the momentum of the electron parallel to the screen is un-
certain, after passing through the slit, by an amount

Ap =I£ sin a (20)

since %/\ is the momentum of the electron in the direction
of the beam. Then, since Ax=d,

AxAp~h .
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In this discussion we have avoided the dual character of
light, but have made extensive use of the two theories of
the electron.

As a last method of determining position we discuss the
well-known method of observing scintillations produced
by a-rays when they are received on a fluorescent screen
or of observing their tracks in a Wilson chamber. The
essential point of these methods is that the position of
the particle is indicated by the ionization of an atom; it is
obvious that the lower limit to the accuracy of such a
measurement is given by the linear dimension Ag; of the
atom, and also that the momentum of the impinging
particle is changed during the act of ionization. Since the
momentum of the electron ejected from the atom is
measurable, the uncertainty in the change of momentum
of the impinging particle is equal to the range Ap, within
which the momentum of this electron varies while moving
in its un-ionized orbit. This variation in momentum is
again related to the size of the atom by the inequality

Ap A= .

Later discussion will show, in fact, that quite generally®

APJAQSN ’}’I»h )

where » is the quantum number of the stationary state
concerned (cf. § 2¢c below). Thus the uncertainty relation
also governs this type of position measurement; here the
dualism of treatment is relegated to the background, and

*N Bohr, loc. cit.
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the uncertainty relation appears rather to be the result of
the Bohr quantum conditions determining the stationary
state, but naturally the quantum conditions are them-
selves manifestations of the duality.

b) Measurement of the velocity or momentum of a free
particle—The simplest and most fundamental method of
measuring velocity depends on the determination of posi-

F16. 7

tion at two different times. If the time interval elapsing
between the position measurements is sufficiently large,
it is possible to determine the velocity before the second
was made with any desired accuracy, but it is the velocity
after this measurement which alone is of importance to
the physicist, and this cannot be determined with exact-
ness. The change in momentum which is necessarily pro-
duced by the last observation is subject to such an inde-
terminateness that the uncertainty relation is again ful-
filled, as has been shown in the last section.
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Another common method of determining the velocity
of charged particles makes use of the Doppler effect.
Figure 7 shows the experimental arrangement in its essen-
tials. The component, p., of the electron’s momentum
may be supposed to be known with ideal exactness, its
x-co-ordinate therefore completely unknown. On the
other hand, the y-co-ordinate of the electron will be as-
sumed to have been accurately determined, and p, cor-
" respondingly unknown. The problem is therefore to de-
termine the velocity in the y-direction, and it is to be
shown that the knowledge of the y-co-ordinate is de-
stroyed by this measurement to the extent demanded by
the uncertainty relation. The light may be supposed in-
cident along the x-axis, and the scattered light observed
in the y-direction. (It is to be noted that the Doppler
effect vanishes, under these conditions, if the electron
moves along the straight line x —y=o0.) The theory of the
Doppler effect is in this case identical with that of the
Compton effect, and it is only necessary to use the laws of
conservation of energy and momentum of the electron
and light quantum. Letting E denote the energy of the
electron, » the frequency of the incident light, and using
primes to distinguish the same quantity before and after
the collision, we have

w+E=h/+E
hy ,
‘c'+P2"P—v 3 (21)

'
Pﬂ=cy.—',_pill »
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whence
y—v)=E'—

——*[ 7 —pi— il
(P:c PQ?:""(?V PP L (22)

___[hv W

’"# c D= C‘Z’zf] )

by
"";E (Pz_Pu) .

Since it is assumed that p, and » are known, the accuracy
of the determination of p, is conditioned only by the ac-
curacy with which the frequency »’ of the scattered light
is measured:

Ap{,=%€ AV . (23)

To determine »” with this accuracy, it is necessary to ob-
serve a train of waves of finite length, which in turn de-
mands a finite time:

I

T=Au’ .

As it is unknown whether the photon collided with the
electron at the beginning or at the end of this time inter-
val, it is also unknown whether the electron moved with
the velocity (1/w)p, or (1/u)p, during this time. The
uncertainty in the position of the electron which is pro-
duced by this cause is thus

I hy
Ay="~— —p)T=— T,
y i (py— 1) o
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whence
Ap,Ay~h .

A third method of velocity measurement depends on
the deflection of charged particles by a magnetic field.
For this purpose a beam must be defined by a slit, whose
width will be designated by d. This ray then enters a
homogeneous magnetic field, whose direction is to be
taken perpendicular to the plane of Figure 8. The length
of that part of the ray which lies in the region of the field
may be a; after leaving this region, the ray traverses a
field-free region of length / and then passes through a
second slit also of width d, whose position determines the
angle of deflection a. The velocity of the particles in the
direction of the beam is to be determined from the equa-
tion

=—. (24)

[
—
—_—
—
—
——
D —

Ag=— —,
uc v?

It may be supposed that the position of the particle in the
direction of the ray was initially known with great ac-
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curacy. This may be achieved, for example, by opening
the first slit only during a very brief interval. It will again
be shown that this knowledge is lost during the experi-
ment in such a manner that the relation ApAg~£ is ful-
filled after the experiment. To begin with, the accuracy
with which the angle a can be determined is obviously
d/(l+a), but even this accuracy can only be attained if
the natural de Broglie scattering of the ray is less than
this. Therefore
d

= =
Aa ) Aa

2

ul >

whence

(Aa)’ = Z‘_*—_'E

The uncertainty in the position of the particle in the ray
after the experiment is equal to the product of the time
required to pass through the field and reach the second
slit and the uncertainty in the velocity. Thus

Ag~ lj‘—aAv ,

whence
‘ AquNZ*%I (av)?,

I4+af ucv)\? .
~E(22) ey,

] e
2)_\(,‘6”: 2 .
v\aHe

The terms in the parentheses are equal to 7/a and A=
h/uv, whence

;;AquZ%?_h,
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since equation (24) is valid only for small values of a.
For large angles of deflection, this derivation requires
radical modification. One must remember, among other
things, that the experiment as described here would not
distinguish between a=o0 and a = 2.

¢) Bound electrons.—If it be required to deduce the un-
certainty relations for the position, g, and momentum, 2,
of bound electrons, two problems must be clearly dis-
tinguished. The first assumes that the energy of the
system, i.e., its stationary state, is known, and then in-
quires what accuracy of knowledge of # and g is implied
in, or is compatible with, this knowledge of the energy.
The second, distinct problem disregards the possibility of
determining the energy of the system and merely inquires
what the greatest accuracy is with which p and ¢ may
simultaneously be known. In this second case, the experi-
ments necessary for the measurement of p and ¢ may
produce transitions from one stationary state to another;
in the first case, the methods of measurement must be so
chosen that transitions are not induced.

We consider the first problem in some detail, and as-
sume an atom in a given stationary state. As Bohr has
shown,* the corpuscular theory then forces one to con-
clude that ApAg is in general greater than 4. For it is
obvious that we are concerned with the variation of p and
q as the electron moves in its orbit, and it follows from

Jpdg=nh (25)

that
AgsAp~nh . (26)
This may most readily be comprehended from a diagram
of the orbit in phase space as given by classical mechanics

1 Tbid. '
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(Fig. 9). The integral is nothing else than the area in-
closed by the orbit, and Ap;Ag, is obviously of the same
order of magnitude. The index s which accompanies these
uncertainties is to indicate that they are not the absolute
minima of these quanti-
ties, but are the special
values which are assumed
by them when the station-
ary state of the atom is
known simultaneously and
exactly. This uncertainty
is of practical importance,
for example, in the discus-
sion of the scintillation
method of counting a-par-
ticles (chap. ii, § 2¢). In the classical theory, it would
seem strange to consider this as an essential uncertainty,
for further experiments could be made without disturbing
the orbit. The quantum theory, however, shows that a
knowledge of the energy is a “determinate case” (reiner
Fall) i.e., a case which is represented in the mathe-
matical scheme by a definite wave packet (in configura-
tion space) which does not involve any undetermined con-
stants. This wave packet is the Schrodinger function of
the stationary state. If the calculation of pages 16-19 is
carried through for this packet, the value of Ap,Ag; is
found to be greater in proportion to the number of nodes
possessed by the characteristic function. If we consider a
function s in equation (12) which possesses # nodes, the
calculation would show that
ApAgi~nh .

* The translators believe that the literal rendering of the German
phrase (“‘pure case’’) does not at all convey the concept involved.

N
—

@

)3 (2]
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To pass on to the second problem: The maximum ac-
curacy is obviously given by ApAg~#4 if all knowledge of
the stationary states be disregarded. Then the measure-
ments can be carried out by such violent agents that the
electron can be regarded as free (acted on only by negli-
gible forces). The momentum of the electron can most
readily be measured by suddenly rendering the interac-
tion of the electron with the nucleus and neighboring
electrons negligible. It will then execute a straight-line
motion and its momentum can be measured in the man-
ner already explained. The disturbance necessary for such
a measurement is therefore obviously of the same order
of magnitude as the binding energy of the electron.

The relation [eq. (6)] is of importance, as Bohr points
out, for the equivalence of classical and quantum mechan-
ics in the limit of large quantum numbers. This is seen
when the validity of the concept of an “‘orbit” is exam-
ined. As the highest accuracy attainable is ApAg~#, the
orbit must be the path of a probability packet whose
cross-section (|S(¢")[?S(¢)|?) is approximately 4. Such a
packet can describe a well-defined, approximately closed
path only if the area inclosed by this path is much greater
than the cross-section of the wave packet. This, accord-
ing to equation (26), is possible only in the limit of Jarge
quantum numbers; for small #, on the other hand, the
concept of an orbit loses all significance, in phase space
as well as in configuration space. It is thus seen to be
essential for this limiting equivalence of the two theories
that the factor # occurs on the right side of equation (26).

The inapplicability of the concept of an orbit in the
region of small quantum numbers can be made clear from
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direct physical considerations in the following manner:
The orbit is the temporal sequence of the points in space
at which the electron is observed As the dimensions of
the atom in its lowest state are of the order 107% cm, it
will be necessary to use light of wave-length not greater
than 107 cm in order to carry out a position measurement
of sufficient accuracy for the purpose. A single photon of
such light is, however, sufficient to remove the electron
from the atom, because of the Compton recoil. Only a
single point of the hypothetical orbit is thus observable.
One can, however, repeat this single observation on a
large number of atoms, and thus obtain a probability dis-
tribution of the electron in the atom. According to Born,
this is given mathematically by yy¥* (or, in the case of
several electrons, by the average of this expression taken
over the co-ordinates of the other electrons in the atom).
This is the physical significance of the statement that yy*
is the probability of observing the electron at a given
point. This result is stranger than it seems at first glance.
As is well known, ¢ diminishes exponentially with increas-
ing distance from the nucleus; there is thus always a small
but finite probability of finding the electron at a great
distance from the center of the atom. The potential en-
ergy of the electrons is negative &t such a point, but very
small. The kinetic energy is always positive; so that the
total energy is therefore certainly greater than the energy
of the stationary state under consideration. This paradox
finds its resolution when the energy imparted to the elec-
tron by the photon used in making the position measure-
ment is taken into account. This energy is considerably
greater than the ionization energy of the electron. and
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thus suffices to prevent any violation of the Jaw of conser-
vation of energy, as is readily calculated explicitly from
the theory of the Compton effect.

This paradox also serves as a warning against carrying
out the “statistical interpretation’” of quantum mechanics
too schematically. Because of the exponential behavior
of the Schrodinger function at infinity, the electron will
sometimes be found as much as, say, 1 cm from the nu-
cleus. One might suppose that it would be possible to
verify the presence of the electron at such a point by the
use of red light. This red light would not produce any
appreciable Compton recoil and the foregoing paradox
would arise once more. As a matter of fact, the red light
will not permit such a measurement to be made; the atom
as a whole will react with the light according to the
formulas of dispersion theory, and the result will not yield
any information regarding the position of a given electron
in the atom. This may be made plausible if one remem-
bers that (according to the corpuscular theory) the’elec-
tron will execute a number of rotations about the nucleus
during one period of the red light. The statistical predic-
tions of quantum theory are thus significant enly when
combined with experiments which are actually capable of
observing the phenomena treated by the statistics. In
many cases it seems better not to speak of the probable
position of the electron, but to say that its size depends
upon the experiment being performed.

The orbital concept has a significance when applied to
highly excited states of the atom; therefore it must be
possible to carry out the determination of the position of
the electron with an uncertainty less than the dimension
of the atom. It does not follow any longer that the elec-
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tron will be removed from the atom by the Compton re-
coil, as may be seen from the following equations. It is
necessary that the wave-length of the light, A\, be much
less than Ag;, or by equation (26),

The energy imparted to the electron by its recoil is ap-
proximately

f Apes (2p) || (260)

1 n n

(E is the energy of the atom, u, the mass of the electron);
for large values of #, this recoil energy is much less than
|E|, the ionization energy of the electron. On the other
hand, this energy will always be great compared to the
energy differences between neighboring stationary states
in this region of the spectrum, which is also, in general,
of the order |E|/#n. As a matter of fact, from equation
(26a) it follows at once that
]111>>|El s
n
so that the frequency of the light used in making the
measurement is great compared to the frequency of the
electron in its orbit.

The Compton effect has as its consequence that the
electron is caused to jump from a state, say # = 1000, to
some other state for which # is, say, greater than 950 and
less than 1050. The particular orbit to which the electron
jumps remains essentially indeterminate because of the
considerations of chapterii,§ 16. The result of the position
measurement is therefore to be represented in the mathe-
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matical scheme by a probability packet in configuration
space, which is built up of characteristic functions of the
states between # =950 and 1050. Its size is determined
by the exactitude of the position measurement. This
packet describes an orbit analogous to that of a corpuscle
of classical mechanics, but, in general, spreads and in-
creases in size with the time. The result of a future meas-
urement of position can therefore only be predicted statis-
tically. The mathematical representation of the physical
process changes discontinuously with each new measure-
ment; the observation singles out of a large number of
possibilities one of which is the one which has happened.
The wave packet which has spread out is replaced by a
smaller one which represents the result of this observa-
tion. As our knowledge of the system does change dis-
continuously at each observation its mathematical repre-
sentation must also change discontinuously; this is to be
found in classical statistical theories as well as in the
present theory.

The motion and spreading of probability packets has
been studied by various authors,* and therefore no mathe-
matical discussion of it need be given here. A simple con-
sideration of Ehrenfest’s* may be mentioned, however.
Consider the motion of a single electron moving in a field
of force whose potential is ¥ (¢). The wave function satis-
fies [cf. eq. A (80)]

(27)
* Rennard, Joc. cit.; C. G. Darwin, Proceedings of the Royal Society,

A, 117, 258, 1927.
2 P. Ehrenfest, Zeiischrift fur Physik, 45, 455, 1927-

L __k
87r’uV¢+8V¢_. 2mt O’
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and the probable value of ¢ is given by equation (4) with
¢ =S, ¢ is one of the rectangular co-ordinates x, v, z
Then differentiating by ¢:

u§=uf (3‘” vy ¥ ) dr;

on substituting the value of dy/d¢ and dy* /3¢ from (27):
h
= ([ at—prpbpryan

integrating by parts:

b

This process may be repeated a second time to obtain
ug. As the calculation is lengthy, but simple, we give
only the result:

- v
pg=—ce %W*dr. (2f,

If ¢ represents a wave packet whose spatial dimension
is small compared to the distance within which V' /d¢
changes appreciably, this may be written

pi=—e 1‘2—2@ (20)

This proves that, so long as the wave packet remains
small, its center will move according to the classical equa-
tions of motion of the electron.
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A remark concerning the rate of spreading of the wave
packet may not be out of place at this point. If the clas-
sical motion of the system is periodic, it may happen that
the size of the wave packet at first undergoes only periodic
changes. The number of revolutions which the packet
may perform before it spreads completely over the whole
region of the atom can be calculated qualitatively as
follows: If there were no spreading at all, it would be
possible to make a Fourier analysis of the probability
density into which only integral multiples of the funda-
mental frequency of the orbit enter. As a matter of fact,
however, the “overtones’” of quantum theory are not
exactly integral multiples of this fundamental frequency.
The time in which the phase of the quantum theoretical
overtones is completely shifted from that of the classical
overtones will be qualitatively the same as the time re-
quired for the spreading of the wave packet. Let J be the
action variable of classical theory, then this time will be

o I

ov ’
or
and the number of revolutions performed in this time is
N~ (30)

v °
Y

In the special case of the harmonic oscillator, V becomes
infinite—the wave packet remains small for all time. In
general, however, NV will be of the order of magnitude of the
quantum number #.
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In relation to these considerations, one other idealized
experiment (due to Einstein) may be considered. We im-
agine a photon which is represented by a wave packet
built up out of Maxwell waves.* It will thus have a cer-
tain spatial extension and also a certain range of fre-
quency. By reflection at a semi-transparent mirror, it is
possible to decompose it into two parts, a reflected and a
transmitted packet. There is then a definite probability
for finding the photon either in one part or in the other
part of the divided wave packet. After a sufficient time
the two parts will be separated by any distance desired;
now if an experiment yields the result that the photon
is, say, in the reflected part of the packet, then the proba-
bility of finding the photon in the other part of the packet
immediately becomes zero. The experiment at the posi-
tion of the reflected packet thus exerts a kind of action
(reduction of the wave packet) at the distant point occu-
pied by the transmitted packet, and one sees that this
action is propagated with a velocity greater than that of
light. However, it is also obvious that this kind of action
can never be utilized for the transmission of signals so that
it is not in conflict with the postulates of the theory of
relativity.

d) Energy measurements.—The measurement of the
energy of a free electron is identical with the measurement
of its velocity, so that most of the possible methods have
already been treated. A method not yet discussed for
measuring the energy of free electrons is that in which

* For a single photon the configuration space has only three dimen-

sions; the Schrodinger equation of a photon can thus be regarded as for-
mally identical with the Maxwell equations.
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they are caused to move against a retarding field. If the
electron passes through the field it is customary to assume
the result of classical theory, that its energy E is certainly
greater than the energy V corresponding to the highest
potential of the field, and if it is reflected, that its energy
is smaller than this critical value. Such a conclusion is
certainly incorrect in the quantum theory, and a brief
discussion of the method will therefore be given here. If
the width of the potential barrier is comparable to the de
Broglie wave-length, \, of the electron, a certain number
of electrons will penetrate it even though their energies
E are less than the critical value necessary on the classical
theory. This number decreases exponentially as the width
of the barrier and ¥V —E increase. Conversely, when
E>V, a certain number will be reflected if the potential
changes appreciably in a distance N\. In any practicable
experiment, these conditions are not realizable, and the
conclusions of the classical theory can be used without
appreciable error. The
mathematical treatment
E of the situation just
sketched is important,

A
ENERGY

s v however, and will there-
P P fore be illustrated in the
x  case of an abrupt discon-
F tinuity in the potential
I1G. 10

distribution. The Schro-
dinger equation for a single electron will be used; this isnot
identical with the wave theory of matter, for this latter
would take the reaction of the wave on itself into account.
The potential distribution is shown in Figure 1o. For the
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incident y-wave in the region I (x <o), we then readily
obtain the expression

2—;:1 (pz—Et)
=ae

2 , ipeE, p>0; (310)

for the wave penetrating into the region II (x> o),

Y o'z —Et)
Ye=aleh T ;%p”=E—V; (310)

and for the reflected wave in I,

¢r=a”eg{l(_pz—m . (310)
If ¢’ is real, it is to be taken greater than zero; if it is im-
aginary, total reflection occurs and it is to be taken as
positive imaginary, since ¥y must remain finite as x> .
At the discontinuity (x=0), ¥ must be continuous and
possess a continuous first derivative; hence

Votdr =y,
a‘/’*_i_%_é‘ﬁt when z=o0 ;
ox ' 9x dx '
or
a+a"=a’

pla—a")=a'p’ .

Solving these equations for o’ and a’':

" p_Pl
a _a?+Pl ’

(32)
ymg 2

YA
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The number of electrons that pass through a given
cross-section per unit time is given by the square of the
absolute magnitude of the wave amplitude multiplied by
the momentum provided it is real. Thus, when E>V, the
intensities of the incident, transmitted and reflected
waves are respectively proportional to

I,=]a|2p ;
e 2P\

Li=la| <p+1>’> ’ (33)
2PN

Ir=—lal <1>+z>’) '

For imaginary values of ', the wave y, does not represent
a current of electrons, but a stationary charge distribu-
tion, and I;=o. As |¢”|=|e| in this case, I,=—1.. In
both cases

I',,=It"“Ir .

The relative probabilities for reflection and penetration
of the electron are, by (33) and (31),

I, H/E VE-V|*

I~ |1/E+I/E -V

P,__:I_t:\fE-—V ] _g_l/E
VE+VE-V

«
PII

(34)

These expressions are plotted as solid lines in Figure 11;
the curves expected from the classical theory are the
dotted lines.

For the elucidation of the physical principles of the
quantum theory a consideration of the mesaurement of
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the energy of atoms is more important than that of free
electrons, and this will be given in greater detail than the
preceding. As the phase of the electronic motion is the

1
! T
w

. E

REFLECTED PROBABILITY
1

w' f
W

E

TRANSMITTED PROBABILITY

F1G. 11

variable which is canonically conjugate to the energy, it
follows from the uncertainty principle that this must be
completely unknown if the energy is precisely determined.
Since the phase of the electronic motion determines the
phase of the radiation emitted, it is this latter which is to
enter the physical discussion. It will be shown that any
experiment which separates atoms that are in the station-
ary state # from those in S

m necessarily destroys any @
pre-existing knowledge of  _| ‘

the phase of the radia- ~= x

tion corresponding to the d
transition n=m. _ F

Let S be a beam of at-
oms (Fig.12),0f widthdin
the x-direction, which is sent through an inhomogeneous
field F (which is not necessarily a magnetic field, as in

F16 12
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the experiment of Stern-Gerlach, but may be electric or
gravitational). The energy of the atoms in state m will
be designated by E,; it will depend on the magnitude of
the field 7 at the center of gravity of the atom, so that
the deflecting force of the field in the x-direction is 8(En
(F))/dx=(dE,/dF)(dF/dz), and is different for atoms in
different states. If T be the time required by the atoms
to pass through the field, and p the momentum of the
atoms in the direction of the beam, the angular deflec-
tion of the atoms will be

OF, T
x p -~
The original beam will thus be divided into several, each
containing only atoms in one state; the angular separation
a of the two beams containing atoms in states # and m,
respectively, will then be
am(2En 2T

dx  dx/)p
This angle must be greater than the natural scattering of
the atomic beams if the two kinds of atoms are to be
separated; hence

N &
azg'—"ﬁ- (35)

The Schrédinger function ¥, contains the periodic fac-
27

tore* . As E, is a function of F, the frequency and
phase of the wave are changed while passing through the
field. This change is indeterminate, to a certain extent,
since it is impossible to tell in what part of the beam the
atom is moving and F varies from point to point. The
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uncertainty, Agp, of the phase change of the radiation of
frequency (E.—E,)/h during the time T is therefore

sar (B ETE 1

dx ox

——==- 27a .

ko h
From equation (35) it follows at once that
Ap=1 . (36)

This means complete indeterminateness in the phases.

The calculation can be carried through more concretely
if it is restricted to apply only to magnetic fields. Neglect-
ing the electron spin, it is known that the atom precesses
like a rigid body when under the influence of a magnetic
field H; the velocity of this precession is

(4
wW=—

2uc

and its axis coincides with the direction of the field. This
velocity is different for various atoms because of the
width of the beam and the inkomogeneity of the field.
This difference in the precession of different atoms tends
to destroy any phase relation which may initially be
present. For the uncertainty in w, we readily obtain

and the dngular separation of the two beams is
e O0H KT

2uc 0x 2mp’

as o must be greater than 4/pd,

. TAw= 27 .
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All trace of the original phase has thus been destroyed by
the experiment. Some atoms will have executed one rota-
tion more than others, and all intermediate angles are
possible. This does not follow if the apparatus is inca-
pable of resolving the two beams, as then a may be less
than %/ pd.

Bohr® has shown that the foregoing consideration re-
solves one of the paradoxes introduced by the assumption
of stationary states. If a beam of atoms, all initially in the
normal state, be excited to fluorescence by illumination
with light of a resonance frequency, we are compelled to
assume that they will radiate coherently. That is, each
atom will scatter a spherical wave, whose phase is de-
termined by that of the incident plane wave at the atom.
The elementary spherical waves will then be so related
that their superposition results in a refracted plane wave.
From the observation of this wave it is impossible to de-
termine the quantum state of the emitter—or even its
atomic character. But if the beam leaves the illuminated
region and is analyzed by means of an inhomogeneous
field, only the beam of atoms in the excited state will be
luminous. This beam will contain relatively few atoms,
widely spaced compared to the probable length of the
train of waves emitted. Their radiation must therefore
be practically identical with that from independent point
sources. This action of the magnetic field was quite in-
comprehensible as long as the assumption was retained
that the resolving power of the apparatus could be in-
creased indefinitely by decreasing the width of the beam
of atoms.

* Loc. cit.



CHAPTER III

CRITIQUE OF THE PHYSICAL CONCEPTS
OF THE WAVE THEORY

In the foregoing chapter the simplest concepts of the
wave theory, which are well established by experiment,
were assumed without question to be ‘“correct.” They
were taken as the basis of a critique of the corpuscular
picture, and it appeared that this picture is only appli-
cable within certain limits, which were determined. The
wave theory, as well, is only applicable with certain
limitations, which will now be determined. Just as in the
case of particles the limitations of a wave representation
were not originally taken into account, so that historically
we first encounter attempts to develop three-dimensional
wave theories that could be readily visualized (Max-
well and de Broglie waves). For these theories the term
“classical wave theories” will be used; they are related to
the quantum theory of waves in the same way as classical
mechanics to quantum mechanics. The mathematical
scheme of the classical and quantum theories of waves
will be found in the Appendix. (The reader must be
warned against an unwarrantable confusion of classical
wave theory with the Schrodinger theory of waves in a
phase space.) Afteracritique of the wave concept has been
added to that of the particle concept all contradictions be-
tween the two disappear—provided only that due regard
is paid to the limits of applicability of the two pictures.

47



48 PRINCIPLES OF QUANTUM THEORY

§ 1. THE UNCERTAINTY RELATIONS FOR WAVES

The concepts of wave amplitude, electric and magnetic
field strengths, energy density, etc., were originally de-
rived from primitive experiences of daily life, such as the
observation of water waves or the vibrations of elastic
bodies. These concepts are also widely applicable to light
and even, as we now know, to matter waves. But since
we also know that the concepts of the corpuscular theory
are applicable to radiation and matter, it follows that the
wave picture also has its limitations, which may be de-
rived from the particle representation. These will now be
considered, first for the case of radiation.

Before proceeding to the subject proper, however, we
must first discuss briefly what is meant by an exact knowl-
edge of a wave amplitude—for instance, that of an electric
or magnetic field strength. Such an exact knowledge of
the amplitude at every point of a region of space (in the
strict mathematical sense) is obviously an abstraction
that can never be realized. For every measurement can
yield only an average value of the amplitude in a very
small region of spacé and during a very short interval of
time. Although it is perhaps possible in principle to di-
minish these space and time intervals without limit by
refinement of the measuring instruments, nevertheless for
the physical discussion of the concepts of the wave theory
it is advantageous to introduce finite values for the space
and time intervals involved in the measurements and only
pass to the limit zero for these intervals at the end of the
calculations. This is, in fact, exactly the procedure
adopted in treating the mathematical theory of wave
fields (cf. A, § 9). It is possible that future developments
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of the quantum theory will show that the limit zero for
such intervals is an abstraction without physical mean-
ing; for the present, however, there seems no reason for
imposing any limitations.

For precision of thought we therefore assume that our
measurements always give average values over a very
small space region of volume 6v= (8/)3, which depends on
the method of measurement. Since it is a question of the
measurement of the field strengths, light of wave-length
M much less than 6/ will not be detected by the experi-
ment. The measurement gives, say, the values E and H
for the field strengths (averaged over 6v). If these values
E and H were exactly known there would be a contradic-
tion to the particle theory, since the energy and mo-
mentum of the small volume 6v are

I 2 2 p— _.I__
E=5v o (E*+-H?) , G=4v e ExH , (37)

and the right-hand members could be made as small as
desired by taking v sufficiently small. This is incon-
sistent with the particle theory, according to which the
energy and momentum content of the small volume is
made up of discrete and finite amounts kv and A»/c,
respectively. For the highest frequency detectable sv <
(he/8l) so that it is clear that the right-hand members
of equation (37) must be uncertain by just the magni-
tudes of these quanta (kv and Av/c) in order that there
be no contradiction to the particle theory. Accordingly
there must be uncertainty relations between the com-
ponents of E and H which give rise to an uncertainty in
the value of E of the order of magnitude kc/8l and in G
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of the order of magnitude %/8! when E and G are calcu-
lated by equations (37). Let AE and AH be the uncer-
tainties in E and H; then the uncertaintiesin E and G are

AE=Z~% {2|E-AE|+2|H-0H|+(AE)+(AH)*}
AGF% (| (BxAH).| + [(AExH); |+ | (AExAH).|}

with cyclic permutation for the y- and z-directions.
Since the most probable values of E and H may
possibly be zero the terms on the right which contain
only AE and AH must alone be sufficient to give the
necessary uncertainty to E and G. This is attained if

he he

with cyclic permutation for the other components. These
uncertainty relations refer to a simultaneous knowledge of
E, and H, in the same volume element; in different
volume elements E, and H, can be known to any degree
of accuracy.

The relations (38), as in the case of the particle theory,
can also be derived directly from the exchange relations
for E and H (cf. A, §§ 9, 12). If a division of space into
finite cells of magnitude &v is used, the integration with
respect to dv in the Lagrangian of A (97) becomes a sum
over all the cells 8v. The momentum conjugate to ¥.(7)
in the rth cell is then [cf. A(104)]

B =60T1,(7) , (39)

0 9L
Oalr)
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and in place of A(111),
L))~ () Tr) =besbes 2 L (40)

2mi 60

where 8, is now the usual é-function,

5 1 for r=s,
* o for r#s .

In the limit dv->0 (40) becomes A(x111).
From (40) and A(134) applied to the case of electric and
magnetic fields it follows that

E(1)®a(5) = ®(8)E\(r) = — 2h6i8,8,: ;; ) (41)

When it is remembered that an uncertainty A®, gives an
uncertainty of order of magnitude A®,/5l for the field
strengths resulting from &, it will be seen that (41) leads
immediately to the uncertainty relations (38).

Matter waves may be treated in an entirely similar
way. It must be noted, however, that no experiment can
ever measure the amplitude directly, as is evident from
the fact that the de Broglie waves are complex. If ex-
change relations for the wave amplitudes are derived
formally from those for ¢ and ¢*, the result is, to
be sure, a physically reasonable one in the case of the
Bose-Einstein statistics. However, use of the experi-
mentally correct Fermi-Dirac statistics gives the mean-
ingless result that ¢ and ¢* cannot be exactly measured
simultaneously at different points of space. It is thus
highly satisfactory that there ic no experiment which will
measure ¥ at a given point at a given time. The mathe-
matical reason for this is that even for the interaction of
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radiation and matter the part of the Lagrangian referring
to matter contains only terms of the form y¢*. From the
considerations just given it can also be seen that the Bose-
Einstein statistics is a physical necessity for light-quanta
if one makes the apparently very natural assumption that
measurements of the electric and magnetic fields at differ-
ent points of space must be independent of each other.

§ 2. DISCUSSION OF AN ACTUAL MEASUREMENT
OF THE ELECTROMAGNETIC FIELD

As in the case of the corpuscular picture, it must be
possible to trace the origin of the uncertainty in a meas-
urement of the electromagnetic field to its experimental

B

X
/
e
; d
g._

F16. 13

source. We therefore discuss an experiment which is
capable of simultaneously measuring E, and H; in the
same element of volume §v. This can be accomplished by
the observation of the deflection in the direction of x of
two beams of cathode rays which traverse the volume in
opposite directions along the y-axis (cf. Fig. 13). It may
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be assumed that the width of both beams in the z-direc-
tion is 8/, i.e., the whole width of the volume element, but
their widths in the perpendicular direction must be less
than this, say d, so that they may traverse §v without
mutual disturbance. If the distance between the two
rays is of order of magnitude éZ, the small inhomogeneities
of the field in this direction are also averaged out; it would
also be possible to vary the distance between them for
this purpose. This experimental arrangement will enable
the measurement of E, and H; in 8! provided only that the
fields are not too inhomogeneous; should this condition
not be fulfilled, the method is incapable of giving a defi-
nite result, for the field must not vary appreciably across
the width of the rays, or else these will become diffuse
and no simple method of determining the deflections is
then available.

The angular deflection, a, of the rays in the distance 8]
is to be observed, and the field can be calculated from the

formulas
Py >#5l
= + H
e py< v

Because of the natural spreading of the matter rays, the
accuracy of the measurements is given by

_}f_ 23 h Dy I-‘C
AE’Zed udl’ AH.z “ed il py° (42)

One essential factor remains to be considered, however.
Each of the two electrons which pass through 6v simul-
taneously modifies the field, and hence the path of the
other electron. The amount of this modification is uncer-
tain to some extent, since it is not known at which point
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in the cathode ray the electron is to be found. The uncer-
tainty as to the actual fields which arises from this fact is

thus

s ed S ¢ Py
AE:'—' (61)3 b 2= (61)3 ].LC b (43)
whence
) ke
AE.AH,> @

which was to be shown. It is to be noted that the simul-
taneous consideration of both the corpuscular and wave
picture of the process taking place is again fundamental
If the corpuscular picture of the cathode rays had not
been invoked, and a continuous distribution of charge
assumed as the picture of the rays, then the uncertainty
(43) would have disappeared.



CHAPTER IV

THE STATISTICAL INTERPRETATION OF
QUANTUM THEORY

§ I. MATHEMATICAL CONSIDERATIONS

It is instructive to compare the mathematical appa-
ratus of quantum theory with that of the theory of rela-
tivity. In both cases there is an application of the theory
of linear algebras. One can therefore compare the mat-
rices of quantum theory with the symmetric tensors of
the special theory of relativity. The greatest difference is
the fact that the tensors of quantum
theory are in a space of infinitely ‘
many dimensions, and that this \ ,

. . . E
space is not real but imaginary. The P
orthogonal transformations are re-
placed by the so-called ‘“‘unitary”
transformations. In order to obtain q
a picture of this space, we abstract
from such differences, fundamental
though they be. Then every quantum theoretical ‘“‘quan-
tity’’ is characterized by a tensor whose principal direc-
tions may be drawn in this space (cf. Fig. 14). In order
to obtain a clear picture, one may recall the tensor of
the moments of inertia of a rigid body. The principal
directions are, in general, different for each quantity;
only matrices which commute with one another have
coincident principal directions. The exact knowledge of

55
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the ru.nerical value of any dynamical variable corre-
sponds to the determination of a definite direction in
this space, in the same manner as the exact knowledge
of the moment of inertia of a solid body determines
the principal direction to which this moment belongs
(it is assumed that there is no degeneracy). This di-
rection is thus parallel to the kth principal axis of the
tensor 7, along which the component T';; has the value
measured. The exact knowledge of the direction (except
for a factor of absolute magnitude unity) in unitary space
is the maximum information regarding the quantum dy-
namical variable which can be obtained. Weyl* has called
this degree of knowledge a determinate case (reiner Fall).
An atom in a (non-degenerate) stationary state presents
such a determinate case: The direction characterizing it
is that of the kth principal axis of the tensor E, which be-
longs to the energy value E;;. There is obviously no sig-
nificance to be attached to the terms “value of the co-
ordinate ¢,” etc., in this direction, just as the specification
of the moment of inertia about an axis not coinciding with
one of the principal directions is insufficient to determine
any type of motion of the rigid body, no matter how
simple. Only tensors whose principal axes coincide with
those of E have a value in this direction. The total angu-
lar momentum of the atom, for example, can be deter-
mined simultaneously with its energy. If a measurement
of the value of g is to be made, then the exact knowledge
of the direction must be replaced by inexact information,
which can be considered as a “mixture” of the original
directions Ex, each with a certain probability coefficient.

*H. Weyl, Zeitschrift fur Physik, 46, 1, 1927.
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For example, the indeterminate recoil of the electron
when its position is measured by a microscope converts
the determinate case Ej; into such a mixture (cf. chap.
ii, § 2¢). This mixture must be of such a kind that it may
also be considered as a mixture of the principal directions
of ¢, though with other probability coefficients. The meas-
urement singles a particular value ¢’ out of this as being
the actual result. It follows from this discussion that the
value of ¢’ cannot be uniquely predicted from the result of
the experiment determining E, for a disturbance of the
system, which is necessarily indeterminate to a certain
degree, must occur between the two experiments in-
volved.

This disturbance is qualitatively. determined, however,
as soon as one knows that the result is to be an exact value
of ¢. In this case, the probability of finding a value ¢’
after E has been measured is given by the square of the
cosine of the angle between the original direction E, and
the direction ¢’. More exactly one should say by the
analogue to the cosine in the unitary space, which is
|S(E,q")|. This assumption is one of the formal postulates
of quantum theory and cannot be derived from any other
considerations. It follows from this axiom that the values
of two dynamical quantities are causally related if, and
only if, the tensors corresponding to them have parallel
principal axes. In all other cases there is no causal rela-
tionship. The statistical relation by means of probability
coefficients is determined by the disturbance of the system
produced by the measuring apparatus. Unless this dis-
turbance is produced, there is no significance to be given
the terms “value” or “probable value” of a variable in a
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given direction of unitary space which is not parallel to a
principal axis of the corresponding tensor. Thus one be-
comes entangled in contradictions if one speaks of the
probable position of the electron without considering the
experiment used to determine it (cf. the paradox of nega-
tive kinetic energy, chap. ii, § 2d). It must also be empha-
sized that the statistical character of the relation depends
on the fact that the influence of the measuring device is
treated in a different manner than the interaction of the
various parts of the system on one another. This last
interaction also causes changes in the direction of the
vector representing the system in the Hilbert space, but
these are completely determined. If one were to treat the
measuring device as a part of the system—which would
necessitate an extension of the Hilbert space—then the
changes considered above as indeterminate would appear
determinate. But no use could be made of this deter-
minateness unless our observation of the measuring de-
vice were free of indeterminateness. For these observa-
tions, however, the same considerations are valid as those
given above, and we should be forced, for example, to in-
clude our own eyes as part of the system, and so on. The
chain of cause and effect could be quantitatively verified
only if the whole universe were considered as a single
system—but then physics has vanished, and only a
mathematical scheme remains. The partition of the world
into observing and observed system prevents a sharp
formulation of the law of cause and effect. (The observ-
ing system need not always be a human being; it may also
be an inanimate apparatus, such as a photographic plate.)

As examples of cases in which causal relations do exist
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the following may be mentioned: The conservation
theorems for energy and momentum are contained in the
quantum theory, for the energies and momenta of differ-
ent parts of the same system are commutative quantities.
Furthermore, the principal axes of ¢ at time ¢ are only
infinitesimally different from the principal axes of ¢ at
time ¢+d¢. Hence, if two position measurements are car-
ried out in rapid succession, it is practically certain that
the electron will be in almost the same place both times.

§ 2. INTERFERENCE OF PROBABILITIES

Many paradoxical conclusions may be deduced from
the foregoing principles if the perturbation introduced by
measuring instruments is not adequately considered. The
following idealized experiment furnishes a typical example
of such a paradox.

A beam of atoms, all of which are initially in the state
n, is directed through a field F, (Fig. 15). This field will

\2 \4
Zh F. 7

Fic. 135

cause transitions to other states if it is inhomogeneous in
the direction of the beam, but will not separate atoms of
one state from those in another. Let S,,, be the transfor-
mation function for the transitions in the field F; so that
|S7 [ is the probability of finding an atom in the state m
after it has emerged from the field F;. Farther on the
atoms encounter a second field F,, similar in properties
to F, for which the corresponding transformation func-
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tion is S;,;. This field is again incapable of separating the
atoms in different states, but beyond F, a determination
of the stationary state is made by means of a third field
of force. Now, for those atoms that are in the state m
after passing through F; the probability of a transition to
state [ on passing F, is given by |S.|>. Hence the prob-
able fraction of the atoms in the state / beyond F, should

be given by
Z|S§zm|’| m | (44)

On the other hand, according to equation A(69), the
transformation function for the combined fields F; and F,

: 274 —\SI 173 . 1 3 h 1
18 O = S mi, Wwhich results in the value
m
E S;Lm ;I,ll
m

for the same probability as represented by equation (44).

The contradiction disappears when it is remarked that
the formulas (44) and (45) really refer to two different
experiments. The reasoning leading to (44) is correct only
when an experiment permitting the determination of the
stationary state of the atom is performed between F, and
F,. The performance of such an experiment will nec-
essarily alter the phase of the de Broglie wave of the atom
in state m by an unknown amount of order of magnitude
one, as has been shown in chapter ii, § 2d. In applying
(45) to this experiment each member S;,,S/; in the sum-
mation must thus be multiplied by the arbitrary factor
exp(ipn) and then averaged over all values of ¢,. This

2

St |2= (45)
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phase average agrees with (44), which thus applies to this
experiment. The rules of the calculus of probabilities
can be applied to |S,./* only when the causal chain has
actually been broken by an observation in the manner
explained in the foregoing section. If no break of this
sort has occurred it is not reasonable to speak of the atom
as having been in a stationary state between F, and F,,
and the rules of quantum mechanics apply.

Three general cases may be illustrated by this experi-
ment, and they must be carefully distinguished in any
application of the general principles. They are:

Case I: The atoms remain undisturbed between F,
and F,. The probability of observing the state / beyond
F, is then

Case II: The atoms are disturbed between F; and F,
by the performance of an experiment which would have
made possible the determination of the stationary state.
The result of the experiment is not observed, however.
The probability of the state / is then

D Sumlt Sl

Cask III: The additional experiment of Case II is per-
formed and its result is observed. The atom is known to
have been in state m while passing from F; to F,. The
probability of the state I is then given by

| So|? .



62 PRINCIPLES OF QUANTUM THEORY

The difference between Cases II and III is recognized
in all treatments of the theory of probability, but the
difference between I and II does not exist in classical
theories which assume the possibility of observation with-
out perturbation. When stated in a sufficiently general-
ized form, this distinction is the center of the whole quan-
tum theory.

§ 3. BOHR’S CONCEPT OF COMPLEMENTARITY

With the advent of Einstein’s relativity theory it was
necessary for the first time to recognize that the physical
world differed from the ideal world conceived in terms of
everyday experience. It became apparent that ordinary
concepts could only be applied to processes in which the
velocity of light could be regarded as practically infinite.
The experimental material resulting from modern refine-
ments in experimental technique necessitated the revision
of old ideas and the acquirement of new ones, but as the
mind is always slow to adjust itself to an extended range
of experience and concepts, the relativity theory seemed
at first repellantly abstract. None the less, the simplicity
of its solution for a vexatious problem has gained it uni-
versal acceptance. As is clear from what has been said,
the resolution of the paradoxes of atomic physics can be
accomplished only by further renunciation of old and
cherished ideas. Most important of these is the idea that
natural phenomena obey exact laws—the principle of
causality. In fact, our ordinary description of nature, and
the idea of exact laws, rests on the assumption that it is

* Nature, 121, 580, 1928.
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possible to observe the phenomena without appreciably
influencing them. To co-ordinate a definite cause to a
definite effect has sense only when both can be observed
without introducing a foreign element disturbing their
interrelation The law of causality, because of its very
nature, can only be defined for isolated systems, and in
atomic physics even approximately isolated systems can-
not be observed. This might have been foreseen, for in
atomic physics we are dealing with entities that are (so far
as we know) ultimate and indivisible. There exist no in-
finitesimals by the aid of which an observation might be
made without appreciable perturbation.

Second among the requirements traditionally imposed
on a physical theory is that it must explain all phenomena
as relations between objects existing in space and time.
This requirement has suffered gradual relaxation in the
course of the development of physics. Thus Faraday and
Maxwell explained electromagnetic phenomena as the
stresses and strains of an ether, but with the advent of the
relativity theory, this ether was dematerialized; the elec-
tromagnetic field could still be represented as a set of
vectors in space-time, however. Thermodynamics is an
even better example of a theory whose variables cannot
be given a simple geometric interpretation. Now, as a
geometric or kinematic description of a process implies
observation, it follows that such a description of atomic
processes necessarily precludes the exact validity of thelaw
of causality—and conversely. Bohr® has pointed out that
it is therefore impossible to demand that both require-

* Ibid
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ments be fulfilled by the quantum theory. They represent
complementary and mutually exclusive aspects of atomic
phenomena This situation is clearly reflected in the theory
which has been developed. There exists a body of exact
mathematical laws, but these cannot be interpreted as
expressing simple relationships between objects existing
in space and time. The observable predictions of this
theory can be approximately described in such terms, but
not uniquely—the wave and the corpuscular pictures both
possess the same approximate validity. This indetermi-
nateness of the picture of the process is a direct result of
the interdeterminateness of the concept “observation”—
it is not possible to decide, other than arbitrarily, what
objects are to be considered as part of the observed system
and what as part of the observer’s apparatus. In the for-
mulas of the theory this arbitrariness often makes it pos-
sible to use quite different analytical methods for the
treatment of a single physical experiment. Some examples
of this will be given later. Even when this arbitrariness
is taken into account the concept “observation’ belongs,
strictly speaking, to the class of ideas borrowed from the
experiences of everyday life.” It can only be carried over
to atomic phenomena when due regard is paid to the limi-
tations placed on all space-time descriptions by the un-
certainty principle.

The general relationships discussed here may be sum-
marized in the following® diagrammatic form:

It need scarcely be remarked that the term ‘“observation’ as here

used does not refer to the observation of lines on photographic plates,
etc., but rather to the observation of “the electrons in a single atom,”

etc. Cf. p. 1.
2 N. Bohr, loc. cit.
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CLASSICAL THEORY

CAUSAL RELATIONSHIPS OF PHENOMENA DESCRIBED
1N TERMS OF SPACE AND TIME

QUANTUM THEORY

Either Or
Phenomena described ) (Causal relationship
in terms of space and " expressed by mathe-
time E - ?:: matical laws
But ¢ g i’; é But
Uncertainty principle = = g Physical description of
< @ phenomena in space-
| time impossible

It is only after attempting to fit this fundamental com-
plementarity of space-time description and causality into
one’s conceptual scheme that one is in a position to judge
the degree of consistency of the methods of quantum
theory (particularly of the transformation theory). To
mold our thoughts and language to agree with the ob-
served facts of atomic physics is a very difficult task, as
it was in the case of the relativity theory. In the case of
the latter, it proved advantageous to return to the older
philosophical discussions of the problems of space and
time. In the same way it is now profitable to review the
fundamental discussions, so important for epistemology,
of the difficulty of separating the subjective and objective
aspects of the world. Many of the abstractions that are
characteristic of modern theoretical physics are to be
found discussed in the philosophy of past centuries. At
that time these abstractions could be disregarded as mere
mental exercises by those scientists whose only concern
was with reality, but today we are compelled by the re-
finements of experimental art to consider them seriously.



CHAPTER V

DISCUSSION OF IMPORTANT EXPERIMENTS

In the preceding chapters the principles of the quantum
theory have all been discussed, but a real understanding
of them is obtainable only through their relation to the
body of experimental facts which the theory must ex-
plain This is particularly true of the general principle of
complementarity. A discussion of further experiments of
a less idealized type than those previously used to illus-
trate the separate principles is therefore necessary at this
point.

§ 1. THE C. T. R. WILSON EXPERIMENTS

The essential features of the C. T. R. Wilson photo-
graphs may be most easily explained with the help of the
classical corpuscular picture. This explanation is also
completely justified from the standpoint of the quantum
theory. The uncertainty relations are not essential to the
explanation of the primary fact of the rectilinearity of the
tracks of a-particles. It is always correct to apply the
classical theory to such semi-macroscopic phenomena,
and the quantum theory is necessary only for the explana-
tion of the finer features.

Nevertheless it will be profitable to discuss the quan-
tum theory of the Wilson photograph. We encounter at
once the arbitrariness in the concept of observation al-
ready mentioned, and it appears purely as a matter of
expediency whether the molecules to be ionized are re-

66
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garded as belonging to the observed system or to the
observing apparatus. Consider first the latter alternative.
The system to be observed then consists of one a-particle
only, and the position measurement resulting from the
ionization will be represented in the mathematical scheme
of the theory by a probability packet |¢(¢")* in the co-
ordinate space ¢=x, vy, 2, of the a-particle. The calcula-
tion will be carried out only for one of the three degrees
of freedom.

If the time of this determination be taken as {=o, and
if a previous determination at a known time is also avail-
able, the momentum of the particle at time {=o0 may be
determined: let 5 and § denote the most probable values
of the momentum and co-ordinate at this time, and Ap,
Ag the probable errors. The value of the uncertainty
product will be considerably greater than % in any actual
case, but we may assume that ApAg=Fh/2m (cf. the re-
marks concerning scintillation measurements, chap. ii,
§ 2a). This is a determinate case; it is then known [eq.
(15)] that

W) = e~ /x80=2 3=
(The index o indicates that ¢ is the value of the co-

ordinate at ¢=0.) The quantum theoretical equations of
motion are then

p=po=_Const.,

Q=“Pn



68 PRINCIPLES OF QUANTUM THEORY

Although p and ¢ do not commute, the latter equation
may nevertheless be integrated® to

I
= 2’

To obtain the probability amplitude ¢(¢’) at time # the
transformation function must be calculated from A(41)
and A(42):

t ko9 N et
<ﬂ omi 3 +qo> S(gsq")=9¢'S(g59') -

The solution of this equation is

2mp

S(ng/) —ae “h (¢'ab—at?/2) ; (46)

by A(6g) the distribution at time ¢ is then to be found
from

+OO
W)= f V) S@a)dd,

which becomes, on evaluation of the integral,

Y(') = belat(@-pt/)F/la(a0)*(r+1/8)] | (47)
where
ht 1 t
= - =Ap — .
b=r r (Ag)* ? plg

It follows that
[9(q) |2 = b e~ (=2 /=00 (18p/w)7] (48)

Kennard, Zeilschrift fiir Physik, 44, 326, 1927.
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'The most probable value for ¢’ is thus (¢/u)p+¢, which
is the result to be expected on the classical theory. The
mean square error (Ag)*+ (fAp/u)? for ¢’ is made up of
two terms corresponding to the uncertainties in ¢, and ps;
its value again agrees with that which would be calculated
classically.

If these methods are applied to all three degrees of
freedom, x, y, 2, it is seen at once that the path of the
center of the probability packet is a straight line. It is to
be noted, however, that this result applies only while the
a-particle is undisturbed in its motion. Each successive
lonization of a water molecule transforms the packet (48)
into an aggregate of such packets (Case II, p. 61). If the
ionization is accompanied by an observation of the posi-
tion, a smaller probability packet of the same form as (48)
but with new parameters is separated out of the aggre-
gate (Case III, p. 61). This forms the starting-point of a
new orbit—and so on. The angular deviations between
successive orbital segments are determined by the relative
momenta of the particle and the atomic electron with
which it interacts, which accounts for the differences be-
tween the paths of a- and B-particles.

As regards the formal aspect of the foregoing calcula-
tions, it may be noted that the transformation from g; to
¢’ can also be carried out by way of the energy. By equa-
tion A(70):

S(g59")=J S(¢E)S(Eq)dE ,

and therefore

¥(¢") = [S(E)AE[¥(4)S(%E)dg; -
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The functions S(¢'E), S(Eq,) are the normalized Schro-
dinger wave functions for the free electron; the function
¥(g") can thus be built up by superposition of such Schrs-
dinger functions. This method has been used by Darwin
in an investigation of the motion of probability packets.
To complete this discussion we shall finally carry
through a mathematical treatment of the Wilson photo-
graphs under the assumption that the molecules to be
ionized are regarded as part of the system. This pro-
cedure is more complicated than the preceding method,
but has the advantage that the discontinuous change of
the probability function recedes one step and seems less
in conflict with intuitive ideas. In order to avoid compli-
cation we consider only two molecules and one a-particle,
and suppose the centers of mass of the former to be fixed
at the points x;, 1, 21, %2, V2, 2.. The a-particle is in mo-
tion with the momenta p,, p,, $,, and its co-ordinates
are x, ¥, 2. The co-ordinates of the electrons in the mole-
cules may be denoted by the single symbols ¢, and g, re-
spectively; the configuration space will thus involve only
x, ¥, 2, ¢i, and ¢,. We inquire for the probability that
both molecules will be ionized and show that it is negligi-
bly small unless the line joining them has nearly the
same direction as the vector (p.p,ps). All interaction be-
tween the two molecules will be neglected, and their inter-
action with the a-particle will be treated as a perturba-
tion;* the energy of this interaction may be written

HO(1)+HO(2) =HO (x— %, y— 1, 2— 21, 1) (
F+H®O (=% Y=y 2—22,7¢s) 49)

* M. Born, Zeitschrift fur Physik, 38, 803, 1920.
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regarded as operators acting on the Schrédinger func-
tion. The wave equation is then

— o VA GG+ O () +HO ()

-

a-Particle Molecules Interaction (50)

L

2wt Ot !

in which V2=92/9x*+0%/3y*+0°/3z>, H°(q,) is the energy
operator of the molecule 7, and e is the perturbation pa-
rameter in powers of which the wave function is to be
expanded: Y=y 4ef® @, .. .. Substituting this
series into the wave equation and equating each power of
€ to zero, we obtain

szl/“)—l- HO(1)y@+HO (2)p9 4 =7 -
= O y

vz¢(r)+H(o)(I)¢<r)+H<o)(2)¢<z)+ o
= —[HO@+HO @O , [ (57

(
i VO HO (0 +HO ()41 2

=—[HO(1)+H(2)p? ,
The characteristic solutions of the first equation are

2T 27l'1.E(°‘t

Y= W p'xqam (l]x)ﬂo'na(qz) ¢ * ’ (52)
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where
H© (Q)San(g) =En¢n(Q) ’ (53)

and
O_L 2
Eo= 2 +E,.+E,. . (54)

These solutions correspond to the case in which the mo-
mentum of the a-particle is known to be exactly p, its
position therefore entirely unknown, while the molecules
are known to be in the states #.,%,, respectively. Allinter-
action is neglected, and the problem is to determine how
the interaction modifies this state of affairs.

This may be solved by determining ¢, ¢ according
to the method of Born. These quantities are first ex-
panded in terms of the orthogonal functions om(qz)

?m(Qz) ’
PO=D" ol (@) () (53)

in which the 2®,, are of course functions of x, ¥, z,
and £ The significance of these quantities is that

l Z e‘vﬁ,‘,’,m,

is the probability of observing the molecule 1 in the state
m,, molecule 2 in the state m,, and the electron at x,y, 2.
Substituting equation (55) for 7=1 into the first of
equations (51), we obtain
hz

—_— 2 — =}
(—gmp VBt Enct L .

(56)

27 [pex—Eet]
= '_[hnxma(I)5nzma+hnzm=(2)5mm,]e A s
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in which the abbreviations

hmmu>=f¢i@aﬂﬁxﬂ¢m@ad&}

(
o (2) = [ 5. (@)HO (2) () 57

have been used. The co-ordinates ¢; and g, have thus
been eliminated from further consideration; the functions
k(1), h(2) are functions of =, v, z, and of x;, ¥, 2, or
%a, Va2, 22, Tespectively. These equations may be further
simplified by writing

2

I g,
o8, (2y2t) = WD (xy2)e 2,

whence

27t

(V5 Fo 0 = o (Y brams nan(2Dbnin)e * 7 (58)

where
P o I e E -
m kmxm:" I:En.+En,+2p P Em, Em,] . (59)
In this expression the kinetic energy of the a-particle is so
much greater than the other terms that, to a sufficient ap-
proximation, we may take

2 = 2-—4L2P2—iﬂj
Fnuma === - (60)

Equations (58) are then all of the form
(V2+k2)'wg¢)lm== Pm;m,(xyz) ] (61)

which is the ordinary equation of wave-motion; pm,m(¥yz)
is the density of the oscillators producing the wave, and,
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as it is complex, also determines their phase The solution
of equation (61) is given by Huyghen’s principle:

W= [ [ [ Pmons (25 " ivayds
miMma mima R ¥ )

where R is the distance from ', 3', 2 to x, ¥, 2

Since, according to (58), pmm is zero unless m:=n;
or m,—nz, all the »$,,. will be zero except w9, and
w®,.s to the first approximation, only one of the two

l'l—l

il —

Il

m Ny

l”““ ; W(un. mz ———
s —————
/
T;
Fic. 16

molecules will be excited. This is in agreement with the
classical theory, which says that the probability of two
collisions is of second order. The character of the func-
tions ), and w(,, is readily determined qualitatively;
by equation (57)

2m

e (E— X, Y— Y, Z—20)€ *

-

87r,uh

Pmzna =

The (fictitious) oscillators producing the wave are thus
all located in the region T'; about i, ¥:, 2; (cf. Fig. 16) in
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which 2,,., is appreciably different from zero. They vi-
brate coherently, their phase being determined essentially

by the factor e » °; in the figure the lines of equal phase
are drawn perpendicular to p. They are spaced at dis-
tances \,. According to equation (61) the wave-length
emitted by the oscillators is also \,, and a simple applica-
tion of Huyghen’s principle shows that the wave dis-
turbance will have an appreciable amplitude only in the
conical region which is shaded and whose axis is in the
direction of p. The cross-section of this region near z,, y;,
2, is determined by the cross-section of the molecule: T',.
Its angular opening also depends on I';, being greater
when T'; is small—i.e., the uncertainty relation Ap,Ax~
h/2mis fulfilled. Similar considerationsapply to (), it is
different from zero only in a beam originating in T', and
also having the direction p.

We now pass to the second approximation: (), may
also be written w{),.exp(—2mi/h) E°t and equation (51)
reduces to

(V)= 8};“{Zu«ﬂhlm<x>+2w<ﬂhm,,<z> }

=§:}’;“ { g)m hmm,(1>+'wmn; "”"’<2)} :

(62)

The right-hand side of this equation will always be
practically zero unless one of the two molecules lies in the
beam originating at the other, for w{),, is different from
zero only in the beam originating in I', and %,m,(1) only
in T';. Unless these two regions intersect, the first term
will be zero; similarly the second term. Thus the prob-
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ability of simultaneous ionization or excitation of the two
atoms will vanish even in the second approximation un-
less the line joining their centers of gravity is practically
parallel to the direction of motion of the a-particle. These
considerations may be extended to the case of any num-
ber of molecules without essential modification. For
each additional molecule the approximation must be
carried one step farther, but the principles and results
will be the same. It has thus been proved that the ionized
molecules will lie practically on straight lines, and that
the deviations from rectilinearity satisfy the uncertainty
relations. In thus including the molecules in the observed
system, it has not been necessary to introduce the dis-
continuously changing probability packet, but if we wish
to consider the methods by which the excitation of the
molecule can actually be observed, these discontinuous
changes (now of a probability packet in the configuration
space &, ¥, 2, ¢x, ¢.) will again play a role.

§ 2. DIFFRACTION EXPERIMENTS

The diffraction of light or matter (Davisson-Germer,
Thomson, Rupp, Kikuchi) by gratings may be explained
most simply by the aid of the classical wave theories.
The application of space-time wave theories to these
experiments is justified from the point of view of the
quantum theory, since the uncertainty relations do not
in any way affect the purely geometrical aspects of the
waves, but only their amplitude (cf. chap. iii, § 1). The
quantum theory need only be invoked when discussing
the dynamical relations involving the energy and mo-
mentum content of the waves.
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The quantum theory of the waves being thus certainly
in agreement with the classical theory in so far as the
geometric diffraction pattern is concerned, it seems use-
less to prove it by detailed calculation. On the other hand,
Duane has given an interesting treatment of diffraction
phenomena from the quantum theory of the corpuscular
picture. We imagine for simplicity that the corpuscle is
reflected from a plane ruled grating, whose constant is d.

Let the grating itself be movable. Its translation in the
z-direction may be looked upon as a periodic motion, in
so far as only the interaction of the incident particles with
the grating is considered; for the displacement of the
whole grating by an amount d will not change this inter-
action. Thus we may conclude that the motion of the
grating in this direction is quantized and that its momen-
tum p, may assume only the values »k/d (as follows at
once from the earlier form of the theory: [pdg=nk).
Since the total momentum of grating and particle must
remain unchanged, the momentum of the particle can be
changed only by an amount m#/d (m an integer):

mh

P;= Pz+“z' .

Furthermore, because of its large mass, the grating can-

not take up any appreciable amount of energy, so that
Pt b =Pt py=1" .

If 6 is the angle of incidence, 6’ that of reflection, we have

2
¢’ p’

cos f=
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whence
g
sin §’—sin 0 od
From equation A(83) for the wave-length of the wave
associated with a particle it then follows that

d(sin 4’ —sin 6) =m\ ,

in agreement with the ordinary wave theory.

The dual characters of both matter and light gave rise
to many difficulties before the physical principles involved
were clearly comprehended, and the following paradox
was often discussed. The forces between a part of the
grating and the particle certainly diminish very rapidly
with the distance between the two. The direction of re-
flection should therefore be determined only by those
parts of the grating which are in the immediate neighbor-
hood of the incident particle, but none the less it is found
that the most widely separated portions of the grating are
the important factors in determining the sharpness of
the diffraction maxima. The source of this contradiction
is the confusion of two different experiments (Cases I
and II, p. 61). If no experiment is performed which
would permit the determination of the position of the par-
ticle before its reflection, there is no contradiction with
observation if the whole of the grating does act on it. If,
on the other hand, an experiment is performed which de-
termines that the particle will strike on a section of length
Ax of the grating, it must render the knowledge of the
particle’s momentum essentially uncertain by an amount
Ap~h/Ax. The direction of its reflection will therefore
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become correspondingly uncertain. The numerical value
of this uncertainty in direction is precisely that which
would be calculated from the resolving power of a grating
of Ax/d lines. If Ax<«d the interference maxima dis-
appear entirely; not until this case is reached can the path
of the particle properly be compared with that expected
on the classical particle theory, for not until then can it
be determined whether the particle will impinge on a rul-
ing or on one of the plane parts of the surface, etc.

§ 3. THE EXPERIMENT OF EINSTEIN AND RUPP*

Another paradox was thought to be presented by the
following experiment: An atom (canal ray) is made to
pass a slit .S of width d with the velocity v, and emits light
while doing so. This light is analyzed by a spectroscope
behind S. Since the light can reach the spectroscope only
during the time ¢t=d/v, the train of waves to be analyzed
has a finite length, and the spectroscope will show it as a
line whose width corresponds to a frequency range

On the other hand, the corpuscular theory seems to pro-
hibit such a broadening. The atom emits monochromatic
radiation, the energy of each particle of which is A», and
the diaphragm (because of its great mass) will not be able
to change the energy of the particles.

The fallacy lies in neglecting the Doppler effect and the
diffraction of the light at the slit. Those photons which
reach P from the atom are not all emitted perpendicularly

1 A. Einstein, Berliner Berichic, p. 334, 1926; A. Rupp, ibid., p. 341,
1026.
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to the canal ray; the angular aperture of the beam of
photons is sin a~)/d because of the diffraction. The Dop-
pler change of frequency due to this is

. 2
Av=sin a P

or
\v

v
AV_Zt—i v=-,

in agreement with the previous result. In this experiment
the exact validity of the energy law for corpuscles is thus
in conformity with the requirements of classical optics.

§4. EMISSION, ABSORPTION, AND DISPERSION
OF RADIATION

a) Application of the conservation laws.—The postulate
of the existence of stationary states, combined with the
5 theory of photons, is sufficient
4 to give a qualitative explanation
3 of the interaction of atoms and

hv,, radiation. This was the first de-

: cisive success of the Bohr theory.
The most important results of
h\,u this theory may be briefly sum-
marized here. Let the stationary
states of the atom be numbered
1,2 3....7.... (Fig. 17),
1 counting from the normal state.
F16. 17 An atom in state 3, for exam-

ple, can spontaneously perform a transition to state 2,
and emit a photon of energy hv,,=E;—E, In the

2




DISCUSSION OF EXPERIMENTS 81

same way, an atom in state 1 may absorb a photon
of energy Avy=E;—E. and thus be excited to the
state 3. It must be emphasized that these statements
are to be taken quite literally, and not as having only a
symbolic significance, for it is possible (e.g., by a Stern-
Gerlach experiment) to determine the stationary state of
the atoms both before and after the emission. It there-
fore follows that the intensity of an emission line is pro-
portional to the number of atoms in the upper of the two
states associated with it, while the intensity of an absorp-
tion line is proportional to the number of atoms in the
lower state. These results, which have certainly been
amply confirmed by experiment, are entirely character-
istic of the quantum theory and can be deduced from no
classical theory, either of the wave or particle representa-
tion, since even the existence of discrete energy values
can never be explained by the classical theory.

An exactly similar situation is met with in the case of
scattering. If an atom in state 1 is excited by a photon 4»
it can re-emit the same light quantum without change of
state (the mass of the nucleus being assumed infinite),
or it can send out the light quantum of energy /' =
hv—E,+E, by transition to state 2 (Smekal* transition;
see Fig. 18). The intensity of both kinds of scattered light
is proportional to the number of atoms in state 1. If an
atom in state 2 is irradiated with light of frequency » it
can emit a photon of energy 4’ =hv+E,—E; of shorter
wave-length by transition to state 1, and again the in-
tensity of this ‘“‘anti-Stokes” scattered light is propor-

* Naturwissenschaften, 11, 873, 1923.
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tional to the number of atoms in state 2 This has been
confirmed by Raman’s* experiments.

b) Correspondence principle and the method of virtual
charges.—The postulate of stationary states and the
theory of photons, because of their very nature, cannot
yield any information either regarding the interference
of the emitted light or even regarding the a priori prob-
ability of the transitions
involved The interfer-
ence properties can be
I i completely accounted

hv'  hy Ihv for by the classical
wave theory, but it is
in turn unable to ac-
hv|  (hv hv’ count for the transi-
tions. To treat these
successfully a self-con-
sistent quantum theory
of radiation is neces-
sary. It is true that an
ingenious combination of arguments based on the cor-
respondence principle can make the quantum theory of
matter together with a classical theory of radiation fur-
nish quantitative values for the transition probabilities,
i.e., either by the use of Schrédinger’s virtual charge
density or its equivalent, the element of the matrix repre-
senting the electric dipole moment of the atom. Such a
formulation of the radiation problem is far from satisfac-
tory, however, and easily leads to false conclusions. These

Tic 18

t Nature, 121, 501; 122, 12, 1928,
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methods may only be applied with the greatest caution,
as the following examples may illustrate.

Consider first the case of an atom containing a single
electron, and whose nucleus has an infinite mass. If x=
(x, v, 2) be the co-ordinate of the electron, and ,(x) the
Schrodinger function, then

— eXum=—e [ Xuridr (63)

is the element of the matrix representing the dipole mo-
ment of the atom. This matrix can enter, strictly speak-
ing, only into calculations based on the principles of the
quantum theory of the electron, which in no way involve
radiation. It may none the less be interpreted as the
dipole moment of the virtual oscillator producing the ra-
diation which is emitted during the transition #—m. This
may be deduced from the correspondence principle by
remembering that it has been shown that %x,,—%,(n—m)
in the limit of large quantum numbers, where x,(n—#)
is a Fourier coefficient of the clagsical motion. It may
thus be presumed that x,,, will enter into the formulas de-
termining the intensity of the radiation in the same way
as x,(m—m), i.e., that |2.,|> will be the a priori probability
of the transition #->m. It must be emphasized that this
is a purely formal result; it does not follow from any of
the physical principles of quantum theory.

It may be made plausible by another consideration
which brings out its unsatisfactory character more clear-
ly. It has been pointed out that the solutions ¢, of the
Schrodinger equation are first approximations to the solu-
tions of the classical matter-wave equations [cf. A(8)].
Denoting by ¢* a true solution of the latter, the radiation



84 PRINCIPLES OF QUANTUM THEORY

from the charge distribution thus represented will be de-
termined by its dipole moment

—e f yeyeradr

provided the extension of this distribution is small com-
pared to the wave-length of the radiation emitted. Now

27t
—=—=— Eat
Yo~ E anpne * ’
n

whence the radiation, calculated by means of this classical
distribution, should be determined by

271
27 (Bn—Em)t
—e E QXL mme . (64)

nm

This formula is certainly wrong since it is derived from
a purely classical theory; the intensity of the radiation of
frequency (E,— E,.)/n depends on the coefficient a,, of the
final state, as well as on @, of the initial state. This is
in direct contradiction to Bohr’s fundamental postulate.
The contradiction may be eliminated by arbitrarily dis-
secting the sum into its separate terms, omitting the
offending factors and relating each term to the upper
level. The formula (63) for the moment of the virtual
dipole associated with the transition then appears once
more.

¢) The complete treatment of radiation and matter—The
consistent treatment of radiation phenomena requires
the simultaneous application of the quantum theory to
radiation and matter, in which case it is naturally imma-
terial whether the particle or wave representation is used.
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Dirac,* in his radiation theory, employs the language of
the particle representation, but makes use of conclusions
drawn from the wave theory of radiation in his derivation
of the Hamiltonian function. The fundamental ideas of
this theory are briefly outlined here.

The atom will be represented by a single electron mov-
ing in an electrostatic force field ¢,. The relativistically
invariant equation of the one electron problem is, accord-
ing to Dirac* (¢, scalar potential, ¢, [i=1, 2, 3], electro-
magnetic potentials),

pot? dortanpit? @) +agme=o, (65)
or
H=—ep,— a,c<pz+§ d)%> —ame? . (66)

(The usual summation convention is adopted.) Here, as
before, the p,’s are the momenta canonically conjugate
to the ¢:;, and the a’s are operators which satisfy the
equations

aartara; =204 ; aa4taa.=o; ai=1. (67)

From the equations of motion it follows that

0H b . O0H
—_— = s = . 8
aq:: axC d%: 5 Q a?; (6 )

p=
Except for a factor (—¢) the a,’s are thus identical with

the velocity matrices. From (66) it follows that the inter-

* Proceedings of the Royal Society, A, 114, 243, 710, 1927.
2 Ibid., 117, 610, 1928.
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action energy 6f atoms and radiation field can be written
in the simple form

- azed’z:'g q.z¢1 . (69)

The Hamiltonian function of the complete system atom
plus radiation field is thus

e .
Huotar system = alom+; Qz¢1+Hradzatzon field - (70)

The problem is brought into a simple mathematical form
by assuming the radiation field to be in an inclosure, thus
providing an orthogonal system of functions on solution
of the Maxwell equations subject to the appropriate
boundary conditions. The ¢, may be developed in this
system, and the coefficients [cf. A(123) and (124)] may
be written in the form

2wt

e,
p— /2
a,=e * N;7*,

where N, is the number of light quanta belonging to the
rth characteristic vibration. The total energy of the radia-
tion field before considering its interaction with the atom

is simply
Hmdwtwn field= Z thllr . (7 I)

In the development of the ¢, in the orthogonal system
the individual terms still depend on the position of the
atom in the inclosure. Since the dependence averages out
in the final result when the inclosure is sufficiently large,
it is convenient to introduce a mean-square amplitude ob-
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tained by averaging the square of the true amplitude over
all possible positions of the atom This yields the follow-
ing expression for ¢,:

— B\ v\ 1/2 3;?9, —3;?0’ 1/2
qbr—( ) Zcos aw<;—> [N, eh e Ny ] (72)

2m¢ ,

Here a,, is the angle between the electric vector of the 7th
characteristic vibration and the g,-axis, and o, is the
number of characteristic vibrations in the frequency in-
terval Av, and solid angle Aw, divided by Av,Aw,. Thus
the Hamiltonian function for the complete system is

H=Huon+ O Nohw,

; ; (73)
el h\/? . Vr X/zl: 1/2 2‘}?9" _zhﬂe’ 1/2
+2<2Trc> ZQT<;T> N;%eh 4 N; ] )

where ¢, is the component of the vector ¢ in the direction
of the electric vector of the rth characteristic vibration.

From equation (73) all the results obtained above by
the use of the conservation laws may immediately be de-
duced. Thus the constancy of H may be proved as in the
Appendix (§ 1, p. 121), and it further follows that for the
emission or absorption of a light quantum #4», the essen-
tial factor is the matrix element of ¢, corresponding to the
transition concerned. Except for certain numerical fac-
tors which will not be calculated here the transition
probability is given directly by the square of this matrix
element. If the calculation is carried out (the interaction
terms being regarded as perturbations), emission and ab-
sorption processes appear as first-order effects and dis-
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persion phenomena as second order. For the details of the
calculation the reader is referred to the papers of Dirac.*

The formulation of the Hamiltonian of the radiation
problem in equation (73) has the disadvantage that it
does not appear to involve the interference and coherence
properties of the radiation. This is only the case, how-
ever, when mean amplitudes are used, as in the foregoing.
If the correct amplitudes resulting from the development
of the &, in the orthogonal functions are retained, then
the fact that these functions are solutions of the Maxwell
equations assures interference and coherence properties
for the radiation that correspond to the Maxwell equa-
tions. For example, solutions of the Maxwell equations
appear as factors of the quantities a,in A (113) and these
factors disappear at the position occupied by the atom
when the vector potential vanishes there because of inter-
ference. Thus there will be no absorption of light in
regions where there would be none according to the
classical interference theory. From these considerations
it follows at once that the classical wave theory is
sufficient for the discussion of all questions of coherence
and interference.

§ 5. INTERFERENCE AND THE CONSERVATION LAWS

It is very difficult for us to conceive the fact that the
theory of photons does not conflict with the requirements
of the Maxwell equations. There have been attempts to
avoid the contradiction by finding solutions of the lat-
ter which represent ‘“needle” radiation (unidirectional

* Dirac (loc. cit.) uses the original Schrodinger form in place of the
Hamiltonian function (73). With the use of (73) the calculation is some-
what simpler, since the quadratic terms in ¢; drop out of the interaction
energy. The results are the same as those of Dirac.
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beams), but the results could not be satisfactorily inter-
preted until the principles of the quantum theory had
been elucidated. These show us that whenever an experi-
ment is capable of furnishing information regarding the
direction of emission of a photon, its results are precisely
those which would be predicted from a solution of the
Maxwell equations of the needle type (cf. the reduction of
wave-packets, II, § 2¢).

As an example, the recoil produced by the emission of
a photon’ will be discussed. Let an atom go from station-
ary state # to m with the emission of a photon, and an
appropriate change of its total momentum. As we are
only concerned with the coherence properties of the
emitted radiation, we use the correspondence-principle
method, in which the radiation is calculated classically.
As source of the radiation we take a charge distribution
which is modeled after the expression which would be
given by the classical theory of matter waves. The atom
will be supposed to consist of one electron (of mass u,
charge —e, co-ordinates r,) and a nucleus (of mass M,
charge +e¢, co-ordinates r,). The Schrédinger function of
the nth state, in which the atom has the total momentum
P,is

27t 2w

2T p. 27 gy
el n&bn(re —r)et

where r.= (ur.+Mt,)/(u+M) is the vector to the center
of gravity of the atom. If the matrix element of the prob-
ability density associated to the transition #n—->m, P>P’,
E-E’, be calculated, one obtains

2mi , ani o o,
eT(P—P)'rc 7 (E—ENt

'pﬂ (Y, - Tn) ‘l/:n (re - rn) e—
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By averaging over the co-ordinates of the nucleus, one
obtains the charge density due to the electron, by averag-
ing over the co-ordinates of the electron, that due to the
nucleus; the total charge density is their sum. This den-
sity is to be considered as the virtual source of the emitted
radiation, at least in so far as its coherence properties are
concerned. The two component densities are [the com-
mon factor ¢ is omitted, r=r,—r, is the variable of in-
tegration, dv the volume element, and y=M/(u+M)]

2wt 27 2wt
(P—P')-r ;- y(P=P')-r (E~E')t
pe=¢" cfe k Ynimdo - et ,
22 " . 2w _ . 2mi
pumoh PP r,,feh WPV e g BB

The total density is thus

2T (P=P') ¢ p—(E~1' .
p=C0nSt.ehI( ) r=( )IJ,

in which the value of the constant does not interest us.
The current densities are given by analogous expressions.
The radiation emitted by these charges is to be calculated

from the retarded potentials:
®,=[p(t—R'/c)/R' - dv

is the scalar potential and analogous expressions may be
obtained for the vector potentials ®, (R’ is the distance
from the point of integration, r, to the point of observa-
tion R). The result is therefore

2

exp -

(P~P') - r—(E—E)(t—R'/c)]

&, = Const. =

dv.
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If one supposes that an experiment has determined the
position of the atom with a given accuracy (the value of
the momentum P must then be correspondingly uncer-
tain), then this means that the density p is given by
the foregoing expression only in a finite volume Aw, and
is zero elsewhere. If the radiation at a great distance from
Av is required, R’ may be expanded in terms of R (the
co-ordinates of the point of observation) and r (the co-
ordinates of the point of integration):

R'=R—R,-r,
where R.=R/R. The scalar potential is then given by

2mi 2w
* (1—R/c) 2T p—P'~hv Rifc) -
®,=Const. e * (z/R)e* TR T

in which w=E—EFE'.

The integral is appreciably different from zero only in
that regions for which the factor of r in the exponential
is less in absolute magnitude than the reciprocal of Al,
the linear dimension of Av. In all other regions, the radia-
tion from different portions of Av is destroyed by inter-
ference. Hence

P—P'=hwR./c+h/Al,

and the atom recoils with the momentum ZvR./c (except
for the natural uncertainty %/Al). If the direction of re-
coil is determined by some experimental procedure, the
emitted radiation thus behaveslike a unidirectional beam.
This is only a special case, however, which is realized
only when P and P’ are determined with sufficient ac-
curacy, and the co-ordinates of the center of gravity are
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correspondingly unknown. The other extreme is realized
when the experiment fixes the position of the atom more
precisely than Al=#/|P—P'|=c/v, i.e., more precisely
than one wave-length of the emitted radiation. The ex-
pression for &, then represents a regular spherical wave
and no conclusions can be drawn concerning the recoil,
since its uncertainty is greater than its probable value.

This example illustrates very clearly how the quantum
theory strips even the light waves of the primitive reality
which is ascribed to them by the classical theory. The
particular solution of the Maxwell equation which repre-
sents the emitted radiation depends on the accuracy with
which the co-ordinates of the center of mass of the atom
are known.

§ 6. THE COMPTON EFFECT AND THE EXPERIMENT
OF COMPTON AND SIMON

There are analogous relations in the theory of the
Compton effect, but even though the calculations are the
same as those of the preceding paragraph, a summary of
the essential results will be given here. It is more interest-
ing to consider bound electrons than free electrons, for
then (if one assumes the position of the stationary atomic
nucleus as given) there is a certain a priori knowledge
concerning the position of the scattering electron. The
laws of conservation result in the equations

Ww+E=h'+E

hy (74)

by Wy
2 ex~ap=""e'+p

The unprimed letters refer to variables before the col-
lision, and the primed ones to variables-after the collision;
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p is the linear momentum of the electron, and e and €’
signify unit vectors in the direction of motion of the light
quantum; Ap gives the range of momentum of the elec-
tron in the atom. If ~Ap is small compared with p and
hv/c, then (74) enables correspondingly exact conclusions
regarding the relation between the directions € and p’
to be drawn. If, for example, p’ be measured in a Wilson
chamber, then the radiation will have all the properties of
needle radiation, since the direction of emission of the
light quantum is determined. If p">>Ap, then the trans-
lational wave function may be regarded as that of a plane
wave, namely, exp 2mi/k- (p’-r—E’f), where r is the vector
specifying the position of the electron. Let the wave func-
tion of the unperturbed state E, which will be assumed to
be the normal state, be Yx(r) exp 2mwi/k- Et, where yg is
different from zero in an interval AI[Al-Ap~h).

These wave functions are perturbed by the incident
wave of frequency », and the perturbation function is a
periodic space function of wave-length A =¢/». Therefore,
as the final result for the perturbed charge distribution,
one obtains an expression of the form

p= cfE(r)e—z_;‘E Etez_’? (5-) e_%;_t (prr =9
=CfE(r)e§hll (}% =_—p,) .'_(E—E’-*.hy)t] ,
Where fg is different from zero only in the interval Al
If one writes the retarded potentials for points at a great
distance from the atom, then®

&R)=ce (z-%f %fﬂ(r’)e"(° 7% e) . (76)
atom’

t G. Breit, Journal of the Optical Society of America, 14, 324, 1927.

(75)



94 PRINCIPLES OF QUANTUM THEORY

In this equation &»'=E—E'+hy, 1’ is the vector to the
point of integration, R to the point of observation, and
R’=R—7". The time factor in equation (76) shows that
the frequency of the scattered radiation is » and cor-
responds to that of equation (74). Furthermore, the in-
tegral on the right-hand side of equation (76) vanishes be-
cause of interference, if the factor of r’ is materially
greater than the reciprocal atomic diameter. Accordingly,
since AlAp~h,

o
—f e=—:~ e+p't~Ap, (77)

in agreement with the second equation of (74). The scat=
tered radiation behaves, therefore, in so far as its coher-
ence properties are concerned, like needle radiation. How-
ever, the direction of the light quantum is not exactly
prescribed, which may be regarded as a consequence of
the indeterminateness of the momentum in the original
stationary state. This indeterminateness can be dimin-
ished if one experiments with more loosely bound elec-
trons, but then the atomic cross-section will be corre-
spondingly greater. If one applies the considerations to
an excited state, then AlAp~mh appears in place of
AlAp~h and in the evaluation of the retarded potentials
one must take the number of nodes of ¥(r’) into account.
Since this involves only nonessential complications, we
have confined ourselves to the normal state.

If one wishes to explain the Geiger-Bothe experiment
on the simultaneity of emission of recoil electron and
scattered photon, then if the correspondence principle
methods sketched here are used, one must deal with
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charge distributions which radiate only during a definite
time interval. The initial state of the electron will be
given, by a wave-packet at rest, whose size depends on the
experimental arrangement. The final state will be repre-
sented by a morning wave-packet, and the charge density,
given by the product of the two wave functions, will then
be different from zero only during the time the two
packets overlap. The radiation produced will then be a
finite wave train moving in a definite direction. A more
consequent explanation of the Geiger-Bothe experiment,
even though it is equivalent in all its essential points, can
only be obtained from the quantum theory of radiation.
Moreover, as already shown, in this theory the laws of
conservation applied to light quanta and electrons hold,
so that one can, without any misgivings, use the custom-
ary corpuscular theory of this experiment.

§ 7. RADIATION FLUCTUATION PHENOMENA

The large mean-square fluctuations, which belong to a
corpuscular theory, are contained in the mathematical
framework of the quantum theory, as shown in the Ap-
pendix. It is especially instructive, however, to study the
relations between the various physical pictures with
which the quantum theory operates by calculating the
fluctuation of a radiation field. Let there be given a black
cavity, of volume V, containing radiation in temperature
equilibrium. The mean energy X contained in a small
volume element AV in the frequency range between » and
v-+Av is, according to Planck’s formula,

8mhy  AvAV

]E=~z§— P - H (78)
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% is the Boltzmann constant and 7 the temperature. Ac-
cording to general thermodynamic laws,* the following re-
lation holds for the mean-square fluctuation of E:

N
BB =T 7 -

Substituting into equation (78), it was shown by Einstein
that

c3 —2

BB =WE + gt - (70)
——’ S — \
corpuscle wave

This value for the mean-square fluctuation can only be de-
rived partially with the help of the classical theory. The
corpuscular viewpoint yields

N E =hn . (80)

The classical particle theory thus results only in the first
part of formula (79). The classical wave theory of radia-
tion, on the other hand, leads exactly to the second part
of (79). The calculations for this will be given later in
connection with the quantum theory. Thus, the quantum
theory proper is necessary for the derivation of formula
(79), in which it is naturally immaterial whether one uses
the wave or the corpuscular picture.

If, in particular, one treats the problem by means of
the configuration space of the particles (although it is
true that this has not been done in a detailed manner for

T, W. Gibbs, Elementary Principles in Statistical Mechanics, pp. 70—
72, 1002.
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light quanta), then one must note that the whole term
system of the problem can be subdivided into non-com-
bining partial systems, from which a definite one can be
chosen as a solution. Because of the exchange relations
(84), which become apparent from the corresponding un-
certainty relations, that term system must be taken whose
characteristic functions are symmetric in the co-ordinates
of the light quanta. This choice leads to the Bose sta-
tistics for the light quanta and also, as Bose* has shown,
to equation (48).

If the wave picture be used, then one obtains the num-
ber of light quanta corresponding to the vibration con-
cerned from the amplitudes of the characteristic vibra-
tions, and therefore the same mathematical scheme. In
order to avoid unnecessary complications in the calcula-
tions, let us treat a vibrating string of length 7 instead of
the black radiation cavity. Let ¢(x, ) be its lateral dis-
placement, and ¢ the velocity of sound in the string. The
Lagrangian function becomes

=25 ()] ®)
whence (A § o)
n=:%, (82)

¢
and

— (3 EPAR: 4 do\ 2 3o\ 2
e o (21 L)+ G e 0
The following exchange relatiens are to be used:
y
I(x)¢(2') — () () =8(x—2") . (84)

t Zeitschrift fur Physik, 26, 178, 1924.
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With the introduction of

2 . krx
qa(x,z)—\/iqu(t) sin 57,
H goes over into

— . k 2
-3 {La+(5)a}- (85)
k

On introducing the momenta associated to g¢x,

p=_ 6, (86)
equation (84) becomes
h
rqi— QP =01 — &7

2L
k 2“ O -—2—7':1:9
Ic‘—\/ N* b Tpe BN

27r7. 2mi
oo o

The characteristic frequencies of the string are »,=
k(c/2l), and therefore

H= zklwk(NH-%) . (89)

or

(88)

For the energy in a small section (o, a) of the string, one
obtains, however,

A I.. . j7x krx
E=-i£ 121;{62 q,qx sin 7% sin j

+q;qkjk< > cos]—l—x cos k%x}dx . (90)
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If the terms of this sum with j=% be singled out, then
under the explicit hypothesis that the wave-lengths to be
considered are all small with respect to a, one obtains the
value

")E=‘l’[7.

One thus finds the fluctuation AJE = Y& — IE by neglecting
the terms with j=% in (go). The integration results in

1 I.. . 2
AE = 212{; QJqLK11~+]k<ZZI-> QJQAK':L} , o (o1)
1%k

where
Ku=c sin (w—w)a/o_c sin (v,+wi)a/c ’
Vi Vk vt (62)
2
’ sin (v,—wr)a/c sin (v,+m)a/c 9
K]]c=c +C .
Vi vtk

Accordingly, the mean-square fluctuation is given by
—_— I I== a2 T 4—;~—2 ,
A=, E:{C,,qi G K3tk (l> g; 9k Kin
17#k
2 .k — e
+ <zlr> {;2’ (QJQJ dx+q.:9, qqu)KJ’tng}

The sums over j and % may be replaced by an integral
over the frequencies »; and v, respectively, if it be as-
sumed that the string 7 is very long, so that its characteris-
tic frequencies are close together. In addition, one finally
assumes that a is large and uses the relation

llim .(I;fh sin’ ve f@)dv=mf(o) (93)

2
a—> - ¥
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if x>0, »,>0. The double integral then becomes a simple
integral and one finds that

AE:= gfdv{ @ +[<2’”’>’qz]z

4L <2W> [(2.¢.)°+ (3.9, ]} . (94)

N\ ¢

Because of the exchange relations (84),

(95)

HP=—OH=C 4t

so that
E-* f i Z, (N, +3) (06)

where Z,dv denotes the number of characteristic frequen-
cies in the interval dv, or, in this case, Z,=2l/c. If the in-
tegral be taken over the frequency interval Ay, one ob-
tains

E=fl} Z, Ay }W(Nv_*'%) ’ (97)

58 =2 o3(Z0) 0wy (09)

One then subdivides X into the thermal energy JE* and
the zero point energy:

f=_7"+% Z, Av h; =¥ *+aAv by s
and finds
N E*\', E%
A 2¢ Ay [<aAv> + aly h]
TB_;kz

=WE*+— Z, g . (99)
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This value corresponds exactly to formula (79). The cor-
responding relation in the classical wave theory may be
obtained by passing to the limit =0 in (99). The clas-
sical wave theory thus leads only to the second term of
equation (99). The quantum theory, which one can in-
terpret as a particle theory or as a wave theory as one
sees fit, leads to the complete fluctuation formula.

§ 8. RELATIVISTIC FORMULATION OF THE
QUANTUM THEORY

The conditions imposed on all physical theories by the
principle of relativity have been neglected in most of the
foregoing discussions, and consequently the results ob-
tained are applicable only under those conditions in which
the velocity of light may be regarded as infinite. The
reason for this neglect is that all relativistic effects belong
to the terra imcogmita of quantum theory; the physical
principles which have been elucidated in this book must
be valid in this region also and thus it seemed proper not
to obscure them with questions that cannot be aswered
definitely at the present time. None the less, this book
would be incomplete without a brief discussion of the at-
tempts to construct theories which shall embody both sets
of principles, and the difficulties which have arisen in
these attempts.

Dirac® has set up a wave equation which is valid for
one electron and is invariant under the Lorentz transfor-
mation. It fulfils all requirements of the quantum theory,
and is able to give a good account of the phenomena of
the ““spinning” electron, which could previously only be

1 P. A. M. Dirac, Proceedings of the Royal Society, A, 117, 610, 1928.
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treated by. ad hoc assumptions. The essential difficulty
which arises with all relativistic quantum theories is not
eliminated however. This arises from the relation

2 Br=wo+pitpi+ ot (z00)

between the energy and momentum of a free electron.
According to this equation there are two values of E
which differ in sign associated with each set of values of
Pe, Py, o The classical theory could eliminate this by
arbitrarily excluding the one sign, but this is not possible
according to the principles of quantum theory. Here spon-
taneous transitions may occur to the states of negative
energy; as these have never been observed, the theory is
certainly wrong. Under these conditions it is very re-
markable that the positive energy-levels (at least in the
case of one electron) coincide with those actually observed.

The difficulty inherent in formula (100) is also shown
by a calculation of O. Klein,* who proves that if the elec-
tron is governed by any equation based on this relation it
will be able to pass unhindered through regions in which
its potential energy is greater than 2mc®. If only motion
in the x-direction be considered the formulas (31a) (31¢)
become

EZ
-6_2‘ =P162+P; 3

E-7)* ,
.(7_)_ =""262+P:tz ,

t Zeitschrift fur Physik, 53, 157, 1929.
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whence

P;2=P;+(E_v):—E2

’

while the wave function has the form

27

-~ (ptx—Et)
eh .

For very small values of V, #; is real and there are trans-
mitted waves, just as in chapter ii, §2f. For larger values,
#» becomes a pure imaginary, so that the wave is totally
reflected at the discontinuity and decreases exponentially
in region II. But for very large values of V, p, again be-
comes real, i.e., the electron wave again penetrates into
the region IT with constant amplitude. A more exact cal-
culation verifies this result.

A difficulty of a somewhat different character arises in
the calculation of the energy of the field of the electron
according to the relativistic theory. For a point electron
(one of zero radius) even the classical theory yields an
infinite value of the energy, as is well known, so that it
becomes necessary to introduce a universal constant of
the dimension of a length—the “radius of the electron.”
It is remarkable that in the non-relativistic theorythis
difficulty can be avoided in another way—by a suitable
choice of the order of non-commutative factors in the
Hamiltonian function. This has hitherto not been pos-
sible in the relativistic quantum theory.

The hope is often expressed that after these problems
have been solved the quantum theory will be seen to be
based, in a large measure at least, on classical concepts.
But even a superficial survey of the trend of the evolution
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of physics in the past thirty years shows that it is far more
likely that the solution will result in further limitations
on the applicability of classical concepts than that it will
result in a removal of those already discovered. The list of
modifications and limitations of our ideal world—which
now contains those required by the relativity theory (for
which ¢ is characteristic) and the uncertainty relations
(symbolized by Planck’s constant %)—will be extended
by others which correspond to e, u, M. But the character
of these is as yet not to be anticipated.



APPENDIX*

THE MATHEMATICAL APPARATUS OF
THE QUANTUM THEORY?

For the derivation of the mathematical scheme of the
quantum theory, whether based on the wave or the
particle picture, two sources are available: empirical facts
and the correspondence principle. The correspondence
principle, which is due to Bohr,? postulates a detailed
analogy between the quantum theory and the classical
theory appropriate to the mental picture employed. This
analogy does not merely serve as a guide to the discovery
of formal laws; its special value is that it furnishes the
interpretation of the laws that are found in terms of the
mental picture used.

We commence with a derivation of the mathematical
structure of quantum mechanics from the corpuscular
analogy.4

§ 1. THE CORPUSCULAR CONCEPT OF MATTER
The fundamental equations of classical mechanics for a
system of f-degrees of freedom may be written in the so-
called “canonical”’ form,

. 0H . O6H
=—— = k=1, 2,.. (x
Pk an’ q a?k’ ( ) 4 ;f), )
t Unless otherwise indicated equation numbers and section numbers
refer to the Appendix.
2 Cf. Translators’ note in Preface.
3 Cf. N. Bohr, Zeitschrift fur Physik, 13, 117, 1923.
4'W. Heisenberg, :bzd., 33, 879, 1925; M. Born and P. Jordan, 7bid.,
34, 858, 1925; M. Born, W. Heisenberg, and P. Jordan, 7bid., 35, 557,
1926. Cf. also W. Heisenberg, Mathematische Annalen, 95, 683, 1926.
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where ¢,, ¢z, . . . ., qs are the generalized co-ordinates,
Px, by - - . ., pr their conjugate momenta, and H the
Hamiltonian function. When H does not depend explicit-
ly on the time the energy equation

H(p, =W, (2)

where W, the total energy, is a constant, follows at once.
For simplicity it may be assumed that the system is
multiply periodic, in which case any co-ordinate ¢ as a
function of the time may be written as a Fourier series,
that is, as a sum of harmonic terms in the form

+
Q= z Z z qgc,)m . ezr1(rwx+nvz+. ot (3)

Ti=—0 Ta=~%0 rj——oo
The ¢i?,,. ., are amplitudes independent of the time
and »;, v,, . .. ., y; are the fundamental frequencies of

the motion. Similar expressions involving the same fre-
quencies may be written for the p, and in general for any
function of the p, and gx.

By a canonical transformation—that is, one which
leaves invariant the form of equations (1)—it is possible
to introduce a new set of canonical conjugates J;, wy,
known as “action-angle variables.”” These are essentially
defined by the following properties: The Hamiltonian H
depends on the J; only and the w, are related to the
fundamental frequencies of the motion by equations of
the form

Wy =i+ By
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where the 8 are constants. In these variables the equa-
tions of motion therefore become

. 0H . o0H
Jk=__—lcrwk=Vk=m’ (k=1, 2,..,f). (4)

According to classical electrodynamics the frequencies
of the spectral lines emitted by an atom will be the fre-
quencies of the harmonic terms in equation (3) and the
amplitudes will determine the corresponding intensities.

According to the correspondence principle there must
exist a close relationship between the mechanics of clas-
sical particles as outlined above and the mechanics of the
quantum theory. For the latter we must therefore seek a
set of equations analogous in form to the equations of
classical theory, but which also take account of certain
well-established empirical facts of atomic physics. Pri-
mary among these are the following:

1. The Rydberg-Ritz combination principle—The ob-
served spectral frequencies of an atom possess a char-
acteristic term structure. That is, all the spectral lines
of an element may be represented as the differences of a
relatively small number of terms. If these terms are ar-
ranged in a one-dimensional array T, T,,...., the
atomic frequencies form a two-dimensional array

v(nm)=Tp—Tn , (8)

from which follows at once the combination principle

v(nk)+v(km) =v(nm) . (6)
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2. The existence of discrete energy values.—The funda-
mental experiments of Franck and Hertz on electronic im-
pacts show that the energy of an atom can take on only
certain definite discrete® values, W, W, . . . . .

3. The Bohr frequency relation.—The characteristic fre-
quencies of an atom are related to its characteristic en-
ergies by the equation

vnm)=7 (Wa=Wn) . ()

We shall now sketch the deduction of the fundamental
equations of the new quantum mechanics, following the
program outlined above. It should be distinctly under-
stood, however, that this cannot be a deduction in the
mathematical sense of the word, since the equations to be
obtained form themselves the postulates of the theory.
Although made highly plausible by the following con-
siderations, their ultimate justification lies in the agree-
ment of their predictions with experiment.

A profound modification, not only of classical dy-
namics, but of classical kinematics, is evidently necessary
if the simple experimental facts mentioned above are to
be incorporated in the foundations of a new theory. In
the classical theory all possible motions of the co-
ordinates may be built up by addition from Fourier terms
of the kind contained in equation (3), and these may be
termed the “kinematic elements,” since the quantities
with which the theory deals, and in particular the energy,

* In general, the atomic energy can also take on continuous values in a
certain range. For the time being this “continuous spectrum” may be dis-
regarded, corresponding to the assumption that the system is multiply
periodic.
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can be expressed in terms of them. Their amplitudes and
frequencies are functions of continuously variable con-
stants of integration as well as of the integers 7, . . . . 7},
which determine the order of the harmonics. This is in
direct contradiction to the existence of only discrete
values of the atomic energies and frequencies and, in fact,
to the very existence of sharply defined spectral lines.

Similar elements must be assumed in quantum mechan-
ics if a correspondence is to be preserved between the two
theories. To assure the existence of discrete energy values
at the outset, the elements will be taken to be functions
of integers. Corresponding to the Rydberg-Ritz combina-
tion principle, a dependence on two sets of integers is re-
quired, while the f-fold character of the classical har-
monics suggests that each set contain f integers. We
therefore postulate elements of the form

q(n! Mg My mf)ezmu(nx. cnp, M .mf)t , (8)

in which the complexes #; . ...#nrand m, . ... my re-
place the single integers # and 7 in an easily understand-
able way. Furthermore, the amplitudes and frequencies
are assumed to be directly those which are given by a
spectral analysis of the emitted radiation, so that the new
theory may be described as a calculus of observable quan-
tities. The frequencies v(n: ... .#ny; m; . ... my) are
therefore assumed to have the term structure (5); they
accordingly obey the combination principle (6).

There can clearly be no question of the addition of such
elements to form a Fourier series as in the classical theory;
there must, however, be an analogue to the representation
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of a co-ordinate by such a series. A sufficiently general
and flexible method is afforded by taking simply the en-
semble of all elements of the form (8) as the entity which,
in the quantum theory of the particle picture, replaces
mathematically the classical representation of a co-
ordinate given in equation (3). The ensemble may be
written as a matrix,

H Q('ﬂx CoMg s M. . mf)ezwiv(m. Snpme. . mf)t” ,

that is, as an infinite quadratic array, ordered according
to the integers #,, m,, which take on all real values. The
new kinematics is accordingly based on a matrix repre-
sentation of the co-ordinates, with

av=] asom)esromn | ©)
corresponding to ¢;. As here, the complexes #n, . . .. s
and m; . ... ms will, in general, be replaced by single

letters #» and m. For the momenta $, a similar matrix
representation is assumed, with the same frequencies, as
is the case in classical Fourier series.”

Such a representation is, however, meaningless both
mathematically and physically until properties and rules
of operation for the matrices have been defined. The cor-
respondence principle must be our guide here. In the first
place, the classical expression (3) must have a real value;
since the terms are complex this can be the case only if
for each term there occurs the conjugate imaginary. This

* For a system which is not multiply periodic, matrices with continu-

ously variable indices must be used, corresponding to a classical represen-
tation by Fourier integrals.
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will also be true of the elements of the matrix (g) if we
assume

qu(mn) =gk (nm) ,

since by (6) v(mn)= —v(num). The asterisk denotes the
conjugate imaginary. Matrices with this type of sym-
metry are called Hermitian and in the quantum theory
all co-ordinate matrices are assumed to be of this kind.

The time derivative ¢, of any co-ordinate is represented
classically by the Fourier series whose terms are the time
derivatives of those of the series representing ¢;. Hence
for the quantum-theory matrices

g= H 2miv(nm)q(nm)er=winmit '[ R (10)

which is again a Hermitian matrix of the form (g).

It must be possible in the quantum theory to answer
such elementary kinematical questions as the following.
Given the matrices representing, say, a momentum p and
a co-ordinate ¢, what matrices represent p+¢, pg, and in
general any function of p and ¢/ In the case of addition
the answer is obvious from the classical analogue. Since
the sum of two Fourier series of the form (3) is again a
series of the same kind and with the same frequencies, but
with amplitudes which are the sums of the component
amplitudes, we must expect for the elements of the quan-
‘tum-theory matrices

(p+q) (nm) = “ [P(ﬂm) +q(nm)]e27rw(nm)t “i .

The rule for multiplication is defined from similar con-
siderations with, however, a characteristic difference
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from classical multiplication, due to the fact that the
quantum frequencies obey the Rydberg-Ritz combina-
tion principle. The product of two Fourier series in the
classical theory may be written as the double sum

e S S e,
4 o

where o replaces the complex o; . . . . oy and [(0+0")/]
stands for (o:+00) v+ . . . . +(oy+0/)vs. To write this
again in the form of equation (3) terms of the same fre-
quency must be collected, i.e., those for which otdo' =1,
giving

pg= Z (pg)-em

where

(PQ)'r: Zpa%'—v . (11)

In the quantum theory the matrix representing pg must
be an ensemble made up of terms p(mm)e*=*™™* and
q(nm)e=»»™% A matrix of the type (9) is again ob-
tained if all elements with the same frequency are added
together, i.e., those for which v(nk)+»(km)=v(nm) by
the combination principle (6). The new amplitudes are
therefore taken to be

palnm)=">" p(nk)q(km) , (x2)
k

and the elements are then pq(nm)e*=*mmX,
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This is the well-known mathematical rule for the multi-
plication of matrices or tensors, and justifies the use of
these terms here. As is obvious from equation (12),
pg(nm)s£gp(nm), so that multiplication in the quantum
theory is non-commutative—a result of great importance
for the further development.

By means of the rules for addition and multiplication
a meaning is given to any function x(p, q) of the co-
ordinate and momentum matrices, at least in so far as the
function may be expressed as a power series. The ele-
ments of the function x will always be of the form
x(nm)e*™™™) and the array of frequencies v(nm) will
always be the same for a given atomic system. Hence a
matrix is sufficiently well represented by its amplitudes
x(nm) alone, the exponential terms being understood.

The customary definitions and conventions of the
theory of matrices are adopted in the quantum theory.
Equality of two matrices means equality of correspond-
ing elements. The unit matrix is defined as the matrix
whose diagonal elements are all unity and whose non-
diagonal elements are zero. It is conveniently written

1= dmn | ,
where

1 when n=m
Bnm=
o when n#m .

The reciprocal #7* of a matrix x is the matrix satisfying
the equations

X Ix=xxTi=1.
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The transpose % of x is the matrix [|x(mn)|| obtained by
interchanging the rows and columns of .

We are now in possession of the elements of a quantum
algebra, in which it is readily seen that all the rules of
ordinary algebra remain valid with the exception of the
commutative law. Thus if %, v, and z represent any func-
tions of the dynamical variables they obey, in the quan-
tum theory, the rules of matrix algebra:

s+y=ytz,
#(y+2) =wy-+a,
#(yz) = ()2,
(w+s)Fa=r+(+2)

but, in general,

XYyFEYL .

So far the Planck constant %, which must play a funda-
mental réle, has not been introduced into the theory. Its
appearance proves to be closely related to the non-com-
mutativity of the variables which forms so striking a con-
trast to the classical theory. In fact, it has been found
by Dirac’ that in the quantum theory the expression
(2mi/k) (xy—vyx) is the analogue of the Poisson bracket

f
ol ox 9y 9y ox
[ex)= ; <6qk dpr  Oqk 3Pk>

in classical mechanics. The invariance of this expression
with respect to canonical transformations of the p, and

1 P, A. M. Dirac, Proceedings of the Royal Society, A, 109, 642, 1925.
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gr 1s well known. In order to make plausible this signifi-
cant connection it will be shown that in the limiting
region where the integers z and  are large compared to
their differences there is asymptotic agreement between
the matrix elements of (27¢/%)(xy —yx) and the harmonic
elements of the classical bracket expression [xy]. Itis first
necessary, however, to state more exactly the connection
between the matrix elements and the Fourier amplitudes.

It will be recalled that in the theory of stationary
states, which formed a preliminary stage in the develop-
ment of the present quantum mechanics, the existence of
only discrete energy values is attained through the fixa-
tion of “stationary” classical motions. If these are defined
from among the continuum of possible motions by the
equations®

Jr=nxh (k=I, 2,....,f), (13)

where the J; are the action variables and the #; integers,
the Bohr frequency condition (7) then appears as the
analogue of the classical relation

_oH
V= 6]k .
For since H is a function of the ; only by equations (4),
dH/dJ, may be written

f}H = lim H(’i’l: .. nf)—H(n, PR (7 Rl Y PR 11/)
6];,;_%.-_-0 ahh ’

* A possible degeneracy is here neglected.
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and in the limiting region where the #, are very large
compared to the ay,

v(ne . . gy m,)=%l Hny..0n;)—Hi—a, . ., nr—ay)]

0H

oH
Na,xg;l"i- .. +afa—m

=a+ .. Fawr.

There is therefore asymptotic agreement in this region,
which may be briefly referred to as that of large quantum

integers, between the spectral frequency v(n: . ... ng
My ....my) and the harmonic (#,—m)v:+ ...:
+(ny—my)v; in the (n; . . . . n) or (m.. . .. my) station-

ary state. Since the harmonic elements of the matrices
of quantum mechanics represent the spectral lines this sug-
gests a general co-ordination between the matrix element
Qs oo M =y . ., Mp— )T e et
and the harmonic (a; . . .. o) in the (#: .. .. n) sta-
tionary state. More briefly,

g{n, n— a)ezm»(mn=ak corresponds to ga(n)e?™ =¥ (14)

in the region of large quantum numbers. This co-ordina-
tion is further justified by the approximate agreement
found empirically in this region between the intensities
calculated classically from the Fourier amplitudes ¢.(#)
in the stationary states and the intensity of the spectral
line »(#, #—a). The indices #» and m of the matrix ele-
ments thus correspond to the quantum numbers of two
stationary states, while the diagonal elements (n=m)
correspond to the stationary states themselves.
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With the aid of the co-ordination (14) the above-men-
tioned correspondence with the Poisson brackets is read-
ily shown. The (nm) element of (2mi/k)(xy—yx) may
be written as a sum over a and 8 of terms of the form
(ZTi/h) {x(n, n"“)}’(n—a, n_a—ﬁ) —y(”: n—B)x(n-—B,
n—a—@)}, where a+B=n—m. On adding and subtract-
ing x(n—B, n—a—B)y(n—a, n—a—pB) this becomes

27s

(_h—> {[x(n, n—a)—x(n—B, n—a—B)ly(h—a, n—a—p)
—[y(n, n—B)—y(n—a, n—a—P)lx(n—B, n—a—p)} .

Now in the region of “large quantum numbers” where
a, <KL n,
(n, n— o)~ x(n—B, n—a—B)~hg 22

and

o m— oy I (=) 1 3ys(n)
y(n—a, n—a—§) 2mif dw 2wl dw

since the harmonics of y are of the form yg(n)e*™#* by

equations (4). Hence the foregoing matrix element is ap-

proximately*

S

[ 0xa(n) dys(n) _ dys(n) 6xa(n)]
a]k a'wk 6];, 8wk ’

at+B=n—m k=1

* The summation necessarily extends into the region where the quan-
tum numbers are not large compared to their difference; hence for numeri-
cal agreement the matrix elements far removed from the diagonal must be
assumed negligible, since they correspond to high harmonics in the classi-
cal theory. The formal agreement, which is of most importance here, is,
of course, unaffected.
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which by the rule (12) for the multiplication of Fourier
amplitudes is the (w—#) harmonic of [xy], expressed in
terms of the action-angle variables.

In the classical theory the Poisson brackets of canoni-
cally conjugate variables p, and ¢, satisfy the relations

1 when k=!

o when k;él}’ lpr, pil=0, lgqu, ql=o0.

[r q]= {

The analogous relations will therefore be assumed for
conjugate variables in the quantum theory, that is,

h
s — it = ponr 1 when k=

o  when kIl (15)
prepi— pi1pr=0,
qrxqr — qi1dx =0O .

These “exchange relations,” by means of which % is intro-
duced into the equations, are of fundamental importance
for quantum mechanics. They correspond to the quan-
tum conditions of the theory of stationary classical mo-
tions, but whereas these conditions could be applied only
to a multiply periodic system, the present exchange rela-
tions must be regarded as generally valid for any motion.
In fact, as will appear later, they are necessary in order to
give meaning to the problem of integration of the equa-
tions of motion, which will now be established.

The canonical equations (1) of the classical theory, if
expressed in terms of the Poisson brackets, become

1"’6=[Hpk] ) q.k=[HqA] .
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The simplest assumption is to take over these equations
formally into the quantum theory, replacing the Poisson
brackets by their quantum analogues. We therefore as-
sume the equations of motion in the quantum theory to
be*
;'Dk=3;:—Z (Hpp—piH) ,
. (16)
Q'k=a,? (Hgr—q:H)

Clearly the equations (15) and (16) are not independent
of each other. Strictly speaking, it is only permissible to
assume equation (15) to be true at a single instant of
time. The exchange relations at any other time must
then be determined by the solution of equations (16) ; how-
ever, a calculation shows that equations (15) are really
independent of the time.

The formal basis of the new mechanics is now com-
pleted; for any physical application, however, the form of
the Hamiltonian corresponding to the special dynamical
problem must be known. It isin general sufficient, in the
spirit of the correspondence principle, to assume the same
form as in the classical theory. The ambiguity as to the

* The equations of motion may be written directly in the classical form
(1) without the use of the Poisson brackets if partial differentiation is de-
fined in a rational way for matrices. The relations

h of h of .
27 aq—Pf f?y 27 ap—fq qf
for any function f are then easily established from the exchange relations
(15). The more useful form (16) then follows at once.
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order of factors in a product which may occur here seldom
arises; when it does special considerations suffice to de-
termine the correct form.

The law of the conservation of energy and the Bohr
frequency condition are not contained explicitly in the
postulates of the theory; it is therefore necessary to show
that they may be derived from them. We commence by
forming a diagonal matrix W with elements

T,k when n=m
(x7)

W (nm) = { .

when n=m

where the T, are the term values of equation (5). The
time derivative of any quantity x may be expressed in
terms of this matrix by the equation

i___fllz"_’ (Wx—zW) , (18)

since the (nm) element of (2mi/k) (wx —2w) is

31?2 (W (nk)x(km) — 2(nk)W (km)] = 2mi(To— Tn)%(nm)
k

= 2qiv(nm) x(nm) =% (nm)

by equation (10). From equation (18) and the equations
of motion (16) it follows that Wp—pW =Hp—pH and
Wq—gW=Hqg—qH, or

(W—H)p=pW—H), (W—H)q=¢(W—H). (:8)

That is, the matrix W—H “commutes” with both » and
g, and it is readily shown that it therefore commutes with
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any function of p and ¢ that can be represented as a power
series. In particular it commutes with H, so that

(W—H)H-H(W—-H)=WH—HW=o0, (19)
which, by equation (18), means
H=o s (20)

expressing the conservation of energy.

Equation (20) gives for the elements of H the infinite
set of equations v(nm)H (nm) =o. If »(nm) =0 only when
n=m, all the non-diagonal elements of H are zero and H
is necessarily a diagonal matrix. In this case, the system
is said to be “non-degenerate.” It may happen, however,
that »(nm) = o for n=m;, the corresponding elements of H
are then undetermined and H is not necessarily diagonal.
The system is then said to be ‘“degenerate.”

It follows further from equation (18’) that

(Wa—Hy) p(nm) = p(nm)(Wn—Hn) ,
(Wa—Hy)q(nm) =q(nm)(Wn—Hy) ,
ie,W,—H,=W,—H, for any value of » and m. There-

fore
H=w+C,

where C is the unity matrix, multiplied by an arbitrary
constant. It is most convenient to put

H=W. (21)

The mathematical apparatus belonging to the particle

picture has been outlined above. Its physical interpreta-
tion is discussed in detail elsewhere, but the two most im-
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portant rules follow naturally at this point from the cor-
respondence principle.

1. The time average of a quantity represented as a
Fourier series is given by the terms independent of &.
Hence, for a non-degenerate system, the diagonal ele-
ments of the matrix representing any variable give the
time averages corresponding to the various stationary
states.

2. The radiation process, when the particle picture is
used, may be regarded as the emission of photons with the
spectral frequencies »(nm) accompanied by a simultane-
ous transition of the atom from the initial state with en-
ergy W, to the final state with energy W, (W,>W,).
The intensity (rate of emission of energy) may then be
represented statistically as A (nm)ky(nm) where A (nm) is
the probability of spontaneous transition from state % to
state m with emission of a photon. On the other hand, the
classical theory gives for the average intensity correspond-
ing to the rth harmonic 2/3(e*/c?)(2m)4[rv}4|t,|?- 2 where
er is the vector dipole moment of the electrons (r is the

vector with components x = Z ¢, y= Z ¢¥), z= ZQQZ),
Ic T

¢, ¢¥, ¢4? being the rectangular co-ordinates of the elec-
trons). On equating the expressions of the two theories
and replacing Fourier terms by matrix elements we ob-
tain for the transition probability

A(nm)= [21rv(nm)]4 [r(nm) |2+ 2. (22)

hv(nm) 30

The justification of this second rule is not obvious since
the Maxwell theory also requires reconsideration. How-
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ever, equation (22) determines only the time average of
the emitted radiation, and it has been shown in chapter
v, § 4, that the Maxwell theory is competent to furnish
this information exactly.

§ 2. THE TRANSFORMATION THEORY

The mathematical scheme of quantum mechanics has
been derived in § 1 in a way which displays its analogy to
classical mechanics; it is not, however, as yet in an easily
usable form In this section it will be shown that the solu-
tion of a dynamical problem in the quantum theory is
equivalent to the principal axis transformation of a Her-
mitian form or tensor. This provides the basis for a prac-
ticable method of solution and shows the consistency of
the conditions imposed.

Suppose a set of Hermitian matrices p;, ¢, can be found
which are independent of the time, satisfy the exchange
relations, and make H(p, ¢) a diagonal matrix. The dy-
namical problem is then solved, for if the matrices are

2me

. . . (Ho—Hn)t
provided with the time factors e* , where H,

and H,, are the diagonal elements of H, it is readily seen
that the equations of motion (16) are satisfied. If p{,
¢% is any set of matrices satisfying the exchange relations,
the transformations

p=STpPS , @=S"¢PS, (23)

where S is any matrix, give a new set likewise satisfying
the exchange relations. This is seen algebraically on sub-
stituting equations (23) in the exchange relations for the
new variables; in a similar way it is easily proved that if f



124 PRINCIPLES OF QUANTUM THEORY

is any function of the p{ and ¢{’ that can be written as
a power series, then

f(r, g =f(STpS , S7¢S) =S (P, ¢”)S . (24)

Since special Hermitian matrices satisfying the exchange
relations can be found, the problem reduces to that of
finding a transformation function S such that

STH(PR.4)S=W , (25)

where W is a diagonal matrix.

The transformations (23) are analogous to the ca-
nonical transformations of classical mechanics; but they
have also a geometrical interpretation of great importance
if the matrices of the quantum theory are interpreted as
tensors in a unitary space of infinitely many dimensions
(Hilbert space). This not only furnishes an analytical
method of representing the transformations (23) and
equation (25) but also provides a convenient language for
the physical interpretation of the theory, as shown in
chapter iv, § 1. For present purposes a purely abstract
formulation will suffice.

Let %, 4{, . . .., be an infinite set of unit orthog-
onal vectors. The space used is that of all vectors

i= 2 t;f)u;f):
n

where the components £ are complex numbers. A tensor
¢ then expresses a linear relation between two vectors ac-
cording to the equations

t=gs, or I = Zq‘°’(nm)s§f,’ .
m
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Consider now a transformation from the foregoing co-
ordinate system U,(u{”, #{, . . . .) to a new co-ordinate
system U(#y, #,, . . . . ), the new vectors being given in
terms of the old ones by the linear equations

Un= ZS(mn)u%’ . (26)

The components £, of any vector ¢ and ¢q(nm) of any ma-
trix ¢ in the new system are then given by the equations

1= ES(nm)tm , (27)
glam) = "> S (nk)g® kDS Um) , (28)
k, 1

where S~ is the matrix of the transformation #,=
2 S~ (nm)t§y) inverse to equation (27). [Sisassumedtobe
non-singular.] Of special importance are the so-called
“unitary” transformations, i.e., those which leave in-
variant the quadratic form Ztnt;{‘ which is the analogue

of distance in unitary space. It is readily verified that for
such unitary transformations

> S(uk)S*(mk)= > S(kn)S*(km) =bum ,
k k

which means that S~ =S * or
SS*=8*S=1 . (29)
They are the analogue in unitary space of rotations of

rectangular co-ordinate systems in real, three-dimension-
al space.



126 PRINCIPLES OF QUANTUM THEORY

It is now seen that equations (23) are of precisely the
form of equations (28), by virtue of the rule (12) for
quantum multiplication; ps, g» may therefore be regarded
as the same matrices or tensors as pi”, g5’ expressed in a
new co-ordinate system U, the new co-ordinates being re-
lated to the co-ordinates in the original system U, by
equations (27). Equation (23) then expresses the condi-
tion on the transformation matrix .S that in the new sys-
tem the tensor H is in the diagonal form—i.e., the co-
ordinate vectors of the new system are the principal axes
of H. It is sufficient to consider only unitary transforma-
tions [S satisfying eq. (28)] since under these conditions
it is well known that the principal axis transformation
problem, at least for finite matrices, always has a solution.

A word is necessary as to the notation. In general it is
not expedient to distinguish matrices in different co-
ordinate systems by new symbols; they are more con-
veniently characterized by using a distinguishing letter
for the indices of the components in each co-ordinate
system. Different numerical values of the indices will be
indicated by primes; thus p(/'l"’), say, represents the com-
ponents of p in the “J” system and p(a’a”’) the components
in another “a” system of co-ordinates. The first of equa-
tions (23), for example, is to be written

plaa)= "> > S @T)pUI)SEe”) .
l/ lll
The indices of the transformation matrix S then refer
naturally to different co-ordinate systems.

The solution of a quantum-mechanical problem given
by the equations of motion (16) and the exchange rela-
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tions (15) thus reduces to the problem of the principal
axis transformation of the Hermitian matrix H. It re-
mains to state briefly the method of solution, which is a
well-known one. The equation (25) may be written

HS—SW=o, (30)

which gives for the elements of S the equations

ZH(Z’;”)S(Z"a') = > S@a W) =o

lll a/l
V=1,2,....
d=1,2,..../"
or, since W is diagonal, an infinite set of homogeneous
linear equations

ZH(Z’Z”)S(Z”a’)—S(l’a’)Wa'=0 (U=1,2,....), (1)

I

for the determination of the elements of any column of the
matrix S(/’a’). The W,’s, which appear as parameters,
are also determined, and, in fact, independently of the
S(V'a’), since the equations (31) will have a solution when
and only when the determinant of the left-hand member
is zero, that is, when the W, s are solutions of the alge-
braic equation

H(i1)—W H(12) H(13)
H(21) H(22)—W H(23)
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The roots W, of this equation are thus characteristic
values of equation (30) or equations (31) and are always
real. They are the diagonal elements of W and therefore
give the energy levels of the system; when the roots of
equation (32) are multiple the system is degenerate, for
there is then coincidence of frequencies by equation (7).

To each W, corresponds a characteristic solution
CuS(1d"), CpS(2a"), . . . ., of equations (31) and hence
a column of the matrix S, the arbitrary constant Cy oc-
curring because of the homogeneity of the equations (31).
In case the system is not degenerate it is readily seen that
any two characteristic solutions are orthogonal to each
other, i.e.,

ES(l'a')S*(l’a") =0 when a’#a”’ .
-

The relation (29) is thus satisfied for the non-diagonal
elements. It may also be satisfied for the diagonal ele-
ments by proper choice of the Cy, although this “nor-
malization” obviously determines only the absolute
magnitude of the C,. There is therefore always an un-
determined factor of absolute magnitude one common
to the elements of each column of S. In case of degeneracy
there is a further indeterminateness, but equation (29)
may always be satisfied.

From the transformation function S the co-ordinates
and momenta which form the solution are given by equa-
tions (23). The extended discussion of the physical in-
terpretation of S is, however, reserved for § s.

In the preceding it has been tacitly assumed that
theorems for finite matrices and sets of equations are true
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for the infinite ones of quantum mechanics. This may be
directly justified only under certain conditions, but the
more rigorous treatment shows that the results of the
formal treatment above are essentially correct.* There is
one important distinction, however, in the case of infinite
matrices: The characteristic value “spectrum’ may con-
tain a continuous sequence of values as well as the dis-
continuous one hitherto exclusively considered. In the
case of the energy this accounts for the existence of con-
tinuous optical spectra. The occurrence of continuous
characteristic values also means that in certain co-
ordinate systems the elements of the matrices will have
continuously variable indices, or indices discontinuous in
a certain range and continuous in another. Our matrix
relations must accordingly be extended to include this
case. The methods of Dirac? will be used for this purpose;
though somewhat formal in character they have the ad-
vantage of great clarity and may be rigorously justified
in all cases which occur practically.

In the first place sums must be replaced by integrals in
a range where the indices are continuously variable, the
elements becoming functions of two sets of variables.
Thus when the range is wholly a continuous one the
product rule, for example, becomes

pq(nm) = [ dk p(nk)q(km) ,

while in the case of mixed ranges there will occur a sum
and an integral. To represent the unit matrix in the con-

* In many practical problems, howeéwer, a principal axis transforma-
tion with a finite number of variables suffices, as in the perturbation

method (§ 4).
2 Proceedings of the Royal Society, A, 113, 621, 1927.
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tinuous case Dirac has introduced a function 6(£), cor-
responding to 8, defined by the following properties:

£(8)=o,
so that 8(§) =o for £5#0,
(—§)=a(8) , (33)
and
JECL 59

when the value zero lies between &, and £,. It is thus a
function with a singularity at £=o0 and is only possible as
the limit of a sequence of functions. From the foregoing
properties it follows readily that

ﬁ " osta-pae=1), (35)

40
[ resa-pae-r), (56)
where f(£) is any regular function and &' (%) = (d/d£)s(%).

Equation (35) results from an integration by parts. Fur-
thermore, since

+o0
f_ e 0o D=0

when a>b and

fdbfs(a—£)8(E —b)dt= f6(a—£)dE[5(E—b)db=1 ,

f_:wa(a—z)a(f—b)dfﬂ(a—b) , 37)
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since the integral has all the properties of the §-function
of a—b.

The elements of the unit matrix in the continuous case
may be expressed in terms of the §-function, for 6(a’—a’’)
has, by equation (37), the property that

fa(al__ alll)x(alllall)dalll —_ x(alall) . (38)
Hence
1(ad/a”)=68(a"—a") .

A diagonal matrix with continuous indices is one of the
form ¢(a’a’)8(a’—a’"). The extension to multiple indices
causes no difficulty; the unit matrix, for example, becomes

1(a’a")=8(aj—ar)0(ai—a)) . ... 8(a}—a}

and may again be written simply 8(a’—a’’).

For the quantum theory those co-ordinate systemsin
which quantities other than the energy take the diagonal
form are also of importance. In such a system it often
proves convenient to replace the indices of all matrices by
corresponding diagonal elements of matrices which are
diagonal in that system. Rows and columns are thus
designated by characteristic values of the matrices which
define the co-ordinate system. This is equivalent to re-
placing quantum numbers by the energies of the cor-
responding stationary states in a system of one degree of
freedom; by the energy and, for example, the angular
momentum in a system of two degrees of freedom, etc.
In general, if the matrices x;, %, . ..., 25 have the
diagonal form, the matrix elements of g will be written

g2 ) =qixs . . . gy xlx) Lo af)
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the primed letters denoting characteristic values of the
corresponding matrices; in particular, the diagonal mat-
rices x, when the indices are continuous, have the form

2(x'2") =282l — 2 )8 (s —x3") . . .. 8(xf—=xf) . (39)

The question naturally arises as to what matrices can
simultaneously have the diagonal form in a given co-
ordinate system. The answer is well known from the
theory of Hermitian forms, and is highly significant for
the quantum theory: Any set of matrices all of which
commute with any other of the set can be simultaneously
brought to the diagonal form by a unitary transforma-
tion. Thus it will always be possible to find a co-ordinate
system in which the position co-ordinates ¢: . . . . gy are
diagonal, but if the exchange relations are satisfied the
momenta p; . . . . prcannot also have the diagonal form.

§ 3. THE SCHRODINGER EQUATION

The admission of continuous matrices into the mathe-
matical scheme permits a new formulation of the princi-
pal axis transformation problem. If, namely, the original
co-ordinate system in which the exchange relations are
satisfied is taken to be one in which the g; are continuous
diagonal matrices the equation determining the transfor-
mation function .S to a system in which any function F
is diagonal becomes a partial differential equation, which
is the analogue of equations (31). While a rigorous justi-
fication of the method used here (that of Dirac?) is diffi-
cult, the results may be confirmed by more exact, though
also more cumbersome, methods.

* Ibid.
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Since the original co-ordinate system need only be one
which the co-ordinate matrices are diagonal and bears no
necessary relation to any special dynamical problem, we
may assume for the ¢, the general diagonal form

a=gs(gi—q’) . ...8(g—qf), (400)

the indices being designated by the characteristic values
% of gi. To represent the conjugate momenta a set of
matrices must be found which satisfies the exchange rela-
tions (15) with the foregoing ¢;. A possible set is obtained
by taking

h
e st r__
peg'q") =~ ¥ (g—gi)olgi—g) - - ..
8(gh—z— gt=2)0(gh4x— gh4a) - - - . 8(gr—9qf) ,

for it may be shown by calculating pxqi—qip: that the
exchange relations are then satisfied. The proof for one
degree of freedom is as follows: The (¢'¢’’) element of

pq—gp is

(40b)

i dqlll[vdl (ql __qlll) qllla(qlll__ qll) __qls(ql _qlll)al (qlll —_— qll)]

2m

The first term, on integration by parts, becomes

qullla(ql_qlll) a;", [qllla(q/ll_qll)]

___qulll[qlllal(q”l_qll)a(ql___qlll)+6(ql__qlll)6(qlll__qll)] .
Therefore,

(pg—ap)(d'¢) =

.

27

dql//[(qlll —_ ql)a(q/ _qlll)al (qIII __qll)]

+%: a(ql__qlll)a(qlll_qll)dq/ll .
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The first integral vanishes by equation (33), while the
second is (k/271)8(¢’—¢"") by equation (37). Hence
(-9 = 2 ot — 0= (1)t
1—9r)\9 e i) T 271
and the exchange relations are satisfied. The extension to
several degrees of freedom follows without difficulty.
Consider now the general problem of transforming any
function F(p, ¢) to the diagonal form by a unitary trans-

formation S. As in the discontinuous case S is essentially
determined by equation (25), which now becomes

STFS=F5(F'—F"),

the indices in the new system where F is diagonal being
denoted by F’ and F”. Again this may be written in the
form of equation (30):

FS=S[F'8(F'—F")]

or
JE(q¢")S(¢"F)dg" =S F)F, (41)

which is an integral equation corresponding to the infinite
set of linear equations (31). This, however, becomes a
partial differential equation when the particular values of
P4, gi given by equations (40) are substituted in the left-
hand member. Carrying out the integration, using the
properties of the §-functions, gives

oy e nll 4 h a !’ e
[P, a0(¢0")S @ FYig" = F (2 20 6 SWF) , (42
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where F([k/2m3][0/3q}], qi) is the operator obtained from
F by the substitution

Fr R L U (43)
Only the proof for one degree of freedom need be given.

For the special cases F=gq and F = p the result follows at
once, since by equations (36) and (35)

' nll
f Lyt —gstg g =1 84T

2mi 2t 9¢
f q'8(¢'—q")S(@"F)dq" =¢'S(¢('F) .

Since all functions which need be considered can be built
up by multiplication and addition from p and ¢, it only
remains to show that if equation (42) holds for F,
and F, it holds for F,+F, and F.F,. That it holds for
F:+F, is trivial. For F.F,= (F.(¢'q") F(¢"'q")dg"" sub-
stitution in equation (42) gives
ff-Fx(q'q'”)dq"’Fz(q"'q”)dq"S(q"F')
=fF:(q’q”’)dq”’ng(q”’q")S(q"F’)dq” ,

k9 /
___fFI(q/q///)dq///F2<;7§: 5q7/—' , q11/> S(q IIFI) ,

_ h 8 ’ h i ’ 1T
"FI<27‘_1: ag’ q>F2<27m- aq’ 9>S(4F) ;
- k3 NsF

_.F,F2<27m. aq, y q>S(q F) )

and the theorem is therefore proved.
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The required transformation function S(¢’F’) must
therefore be a solution of the partial differerttial equation

P d)sum-Fs@r=o, ()
in which F’ is a parameter, corresponding to W, in
equations (31) of which equation (44) is the analogue.
Here also there will be only certain discrete values or con-
tinuous ranges of F for which a solution is possible; these
characteristic values give the diagonal elements of F. The
conditions that the transformation be unitary(S$*=.5-%)
are of importance in determining the character of the
solutions of equation (44). When S is continuous in both
indices they may be written

JS*(¢'F)S(¢'F")dg =5(F'—F") , (45)
JS*¢F)S(¢'F)aF' =b(¢ —¢") , (46)

analogously to equations (28). There are corresponding
summations when the characteristic value spectrum con-
tains a discrete part.

The mathematical problem just treated is a very gen-
eral one. That there are corresponding physical ones will
appear after the extended physical interpretation of the
transformation function has been given in § 5. For the
present we only note that the foregoing method, when
applied to the Hamiltonian H, yields a solution of the
equations of motion.

When H is substituted for F in equation (44) the re-
sulting differential equation is the Schrédinger* equation,

* E. Schrodinger, Annalen der Physik, 79, 361, 489, 1926
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originally discovered in an entirely different manner. The
corresponding transformation function S(¢’H’) is in this
case customarily written ¥ w(g). The Schrodinger equa-
tion is then

B alin@-Wim=o )
and its characteristic values given the energy levels of the
system.

The solutions Y (g) form the columns of the transfor-
mation matrix, which should be compared with the .S of
§ 2. Both represent transformations to a system in which
the energy is diagonal—in the present case, however, the
initial system is a particular one in which the co-ordinates
are diagonal, corresponding to a particular choice of gy,
gi in § 2.

In the typical case of a discrete characteristic value
spectrum the orthogonality conditions (45) become

[¥¥ (@ w(g)dg=o (48)
when W’/ =W",
S l¥w(g)|dg=r1 . (49)

Equation (49) is in general equivalent to boundary con-
ditions, and the orthogonality of the characteristic solu-
tions ¥ w(g), which usually follows, then assures the valid-
ity of equations (48). As in the case of the transforma-
tion matrix S of § 2 there remains in each ‘“column”
¥ w(q) an undetermined phase factor ¢*** not fixed by the
normalization (49).
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The co-ordinate and momentum matrices in the system
in which the energy is diagonal are, by equations (23),

h "
POV = f o ey 4o 59
qW'W") = [¥r(@)gd w(g)dg - (1)

Equations (47), (50), and (51) constitute the most ef-
fective mathematical method for treatment of the dy-
namical problems of quantum mechanics, but they con-
tribute nothing new to the physical interpretation. Spe-
cial considerations are necessary to make clear the physi-
cal meaning of the transformation matrix (cf. § ).

§ 4. THE PERTURBATION METHOD

A description of the principal features of the perturba-
tion theory in quantum mechanics is necessary at this
point. This method may be used when the Hamiltonian
H can be developed in terms of a small parameter \ in

the form
- H=H,\H+NH.+ . ..., (52)

and the solution of the problem corresponding to the
Hamiltonian H, is known, i.e., when the matrices p and ¢,
and any function of p and ¢, are known in that system
in which H, is diagonal (H,-system). In the following the
letter H will be used for the energy matrix in this co-
ordinate system, while W will stand for the energy matrix
in the system in which the complete Hamiltonian is
diagonal (H-system). Corresponding to equation (52) W
may be written in the form

W=WD+XW1+X2W2+ “ e e (53)
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where W,=H,. The required transformation function
which leads from the H,-system to the H-system may also
be written

S=SHASANSs+ . ..., (54)

and S will be unitary to zeroth approximation if
SeSe=1. (s3)

A set of equations will now be found from which § may
be determined. As in § 2, S must satisfy the equation
HS=SW, W being diagonal; substituting the develop-
ments (52), (53), and (54) in this equation and equating
coefficients of equal powers of N gives the equations

HoSo"—'SoWo ] ﬂ
Hon"’Sch;:SQWI y
I:IoSq_SzHo_{—HzSz_SlWI=SOW2 )

: r (s6)
Husr—SrHo"l"Fr(Sz “ e ST—I) Hx c e Hr) =SoWr )

which may be solved in sequence for S,, S;, . ..., and
Woy Wy o . ..
The first equation gives, for the elements of .S,,

So(nn)[Ho(nn) — Ho(mm)] = So(nm)hvo(nm)=o0 , (57)
where the v,(nm) are the frequencies of the unperturbed
system.r A distinction must be made at this point be-

* For simplicity it is assumed that all matrices are discontinuous in
their indices. The method is equally applicable for continuous indices
and hence for the Schrodinger equation.
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tween non-degenerate and degenerate unperturbed sys-
tems. In the former case [»,(nm) %0 when n=m] it fol-
lows at once from equation (57) that S, is a diagonal
matrix; in the latter the non-diagonal terms of S, do not
necessarily vanish. Since the treatment of the two cases
differs from here on it will be assumed at first that the
unperturbed system is non-degenerate.

When S, is diagonal, equation (55) requires |So(mm)| =
1; hence, disregarding the undetermined phases always
present in .S, we may take S,= 1. The second of equations
(56) then becomes

Hon_S!Ho+Hx= W, )

or, for the elements

Tevo(nm) Sy (nm) + H 1 (mm) = Wo(nm)énm - (38)

For the diagonal elements this gives the determination
of the perturbation energy to first approximation:

Wi(nn)=H(nn) . (59)

When nm equation (58) determines the non-diagonal
elements of S;; the diagonal elements of S; are unde-
termined by equation (58) but the condition SS*=1is
satisfied to first approximation if they are taken to be

zero. Hence
__Hi(nm)
by, (nm)

S:(nm) = (x1="bnm) -

The similarity of these results to those of the perturba-
tion theory in classical mechanics will be noted. In par-
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ticular equation (59) corresponds to the well-known clas-
sical theorem that the perturbation function is to first order
the average of the perturbation energy, since the diagonal
elements of H; areits time average. The equation may ac-
cordingly be written

W.=H, .

The remaining equations in (56), when treated in the
same way, give

W (nn) =F,(nn) ,

F.(nm)

Sr("m)= —hvo(nm) (I_anm) )

each F, being determined by the equations preceding the
rth one.

If the unperturbed solution is degenerate it no longer
follows from W, .S, =S, W, that S, is diagonal. When, for
example, Wo(n+1)=W,(n+2)= .... =W,(n+k), equa-
tion (57) shows that S, can still contain elements that
correspond to transitions between the states n+41, n+2,

., n+k. The second of equations (56), however, pro-
vides a system of homogeneous linear equations giving
these non-vanishing elements of .S, and at the same time
W .. Again forming the time mean over the unperturbed
motion (i.e., picking out the rows # and columns m for
which the corresponding »(nm) vanish) gives the equation

E!SO=SOW1 ) (60)

which provides a system of homogeneous linear equations
precisely analogous to equations (31). As there W, may
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be found independently of .S, from the so-called “‘secular
equation,”

Hn+1, n+1)—W, ..H(n+1, ntk)
H.(n+2, n+1) .. Hi(n+2, n+k)

’ =o0. (61)
H.(n+k, n+1) .. H.(n+k, nt+k)—W,

The roots give the elements of W, and the corresponding
linear equations determine S, except for a phase factor in
each column. From here on the calculation may be carried
out as for a non-degenerate system.

§ 5. RESONANCE BETWEEN TWO ATOMS: THE PHYSICAL
INTERPRETATION OF THE TRANSFORMA-
TION MATRICES

The completed scheme for the interpretation of the
mathematics of the quantum theory depends on certain
assumptions as to the physical meaning of the transforma-
tion functions. To illustrate the nature of these assump-
tions and to make them plausible a simple problem will
first be discussed—that of the interaction of two atoms in
resonance.”

Consider two atoms, I and II, with the characteristic
value spectra Wir(n) and Wrr(7) which have a common
characteristic frequency, so that, for instance, »;(nm)=
vr1(ik) or Wi(n) — W 1(m) = W 11(2) — W 11(k) ; they are thus
in resonance. An energy interchange can then occur be-
tween the two atoms, even if the coupling between them

*'W. Heisenberg, Zeitschrift fur Physik, 40, 501, 1926.
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is very weak, the interaction taking place as follows:
Atom I goes from the state » to the state m, giving up
energy hv(nm), while atom II takes up the same energy
hv(nm) = hy(ik) in going from state & to state 7, the process
being reversible.

If the uncoupled atoms are considered as the “un-
perturbed” system the interaction energy H, may be
treated as a perturbation by the method of § 4. A state of
the combined atoms, in the system in which W;+W; is
diagonal, may be specified by two integers (nk), the first
giving the state of atom I, the second the state of atom
II. The states (nk) and (mz) of the unperturbed system
then have equal energies by virtue of the relation

Wo(nk)=Win)+Wrr(k) = Wi(m)+Wiri) = Wa(mi) (62)

resulting from the equality of frequencies; the resonance
thus introduces a characteristic degeneracy. The secular
equation for the determination of the perturbation W, in
the energy may be set up as in § 2 by picking out the ele-
ments of the interaction energy H,(nk; mi) for which the
frequencies v(nk; mz) = (1/h)[Wo(nk) +W.(mi)] vanish by
equation (62). This gives, corresponding to equation (61),

Hi(nk; nk)—W.  Hi(nk; mi)

) ) =o. (63)

H.(mi; nk) H.(mi; m)— W,

The two solutions of this quation are the perturbation
energies W,(a) and W,(b) of the two states of the coupled
system which replace the states (nk) and (mi) of equal
energy for the uncoupled system. (The more symmetric
notation W(nk; mi), etc., is likely to lead to confusion,
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since there is not one-to-one correspondence with the un-
perturbed states.) To each root of equation (63) corres-
ponds a column of the transformation matrix S (obtained
by solution of the linear equations) which will be of the
form

S(nk; a)=s(nk; a)e®s

S(mi; a) =s(mi; a)e'

} for Wi(a) ,

S(nk; b) =s(nk; b)e

S(mi; b)=s(mi; b)e®s } for W(0) -

The ¢’s are real quantities undetermined by the “nor-
malization” SS*=1. The orthogonal matrix

s(nk; a)ee s(nk; b)e'®

s(mi; a)et s(mi; b)erbe

(64)

is thus the zeroth approximation to the transformation
function leading from the system in which the energies
W r and Wiy are diagonal to the system in which the total
energy Wr+W =W is diagonal.

It may be noted parenthetically that in the case of two
equivalent atoms resonance will always occur. This
special case is obtained from the foregoing by setting i=n
and k=m; it is then readily shown that

H.(nm; nm)=H(mn; mn) ,

H.(nm; mw)=H,(mn; nm) ,

when the interaction is symmetric in the two systems.
Since H; is Hermitian the non-diagonal terms in the de-
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terminant of equation (63) are real, and the solutions are
seen to be

W.(a) =H.(nm; nm)~+H,(mn; nm)
Wi(b) =H (nm; nm)—H,(mn; nm) . (63)

For the corresponding matrix of the s’s the calculation
gives, after normalization,

(@) (%)
] -—
1/2 ]/2

(66)
mn || —— —
V2 V2

We return now to the general case.

We shall next discuss the further physical information
that may be obtained from these results. Consider, for
instance, the question of what may be said in the quan-
tum theory as to the energy of atom I alone as a function
of the time. Classically there would occur between two
coupled oscillators of equal frequency a periodic and har-
monic energy interchange with a frequency proportional
to the coupling force; the energy of one of the oscillators
would be given by a curve like that of Figure 1ga. In the
quantum theory, on the other hand, it is to be expected
that the energy of atom I has either the value W (%) or
Wi(m), with a probability of transition between these
values depending again on the strength of coupling; H(?)
should therefore be represented by a curve like that of
Figure 19b. To be sure, this curve cannot be calculated in
the quantum theory, nor can it be experimentally de-
termined; nevertheless the rules so far obtained for the



146 PRINCIPLES OF QUANTUM THEORY

physical interpretation of quantum mechanics are suffi-
cient to permit a calculation of the time mean and the
rriean-square fluctuations of H ;(¢) or any function of H(z).

H: The calculation of the
W, time mean of any function of
H;(¢) may be made as fol-
lows. By rule 1 of § 1 the
W, diagonal elements of the
matrix representing any

WHX _ quantity give directly the
" p time averagesin the corres-
ponding states. The aver-

W — age f(Hp), in the state a

may therefore be calculated
in terms of the diagonal ele-
ments f(Wr(n)) and f(Wr(m)) of f(H) in the system in
which H is itself diagonal (the unperturbed system) by
making use of the transformation function .S of equation

(64):.

f(HI)a = [f(HI)](da) = S*(ﬂk, a)f(nk, nk)S(nkJ a)
+S*(mi; a)f(mi; mi)S(mi; a) v (67)
=|S(nk; a) l’f(WI(ﬂ)(fL))“l-lS(_mi; a)|*f(Wi(m)) .

F16 19

This is precisely the expression for the time average which
would result from the assumption that f(H;) can have
only the values f(W;(n)) and f(Wi(m)) and that these
values occur with relative frequencies |S(nk; a)]* and
|S(mi; a)|?, respectively. Sincef(Wr(n)) and f(W ;(m)) are
the elements of f(H;) in the system in which f(H) is diag-
onal, the first part of the foregoing assumption is equiva-
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lent to the hypothesis that the possible values of f are
the diagonal elements of its matrix in the system in which
it is itself diagonal. The second part, on the other hand,
is a consequence of supposing that |S(#k; a)|* is the rela-
tive probability of finding the value f(Wy(n)) for f(H;)
when the total system is in the state a. (The index (nk)
corresponds to the value f(W;(x)) since it is the label of
a stationary state in the system in which f is diagonal.)
The interpretation as relative probabilities is consistent
because by the normalization |S(nk; a)]*+|S(mi; o) =1.

While a special problem has been treated here the
formal relations are the same in the general transforma-
tion problem. Thus if S(a’B8’) is the transformation
matrix from a system in which any quantity « is diagonal
to a system in which B is diagonal* the time average of
f(a) will always appear in the form (67); i.e.,

f@e=[@IE )= >, S*(B)f()](a'a)S (@B
= > 1S(@8)|e(a'a)

is the time average of f(a) corresponding to the state f8’.
It is therefore reasonable to generalize the assumptions
made above in a special case and to make the following
hypotheses as regards the physical interpretation of the
transformation scheme:?

The values which a quantity o can take on are given by

* The practice of labeling rows and columns by the elements of the
diagonal matrices is used here again.

2 P. Jordan, Zeitschrift fur Physik, 40, 809, 1927; 44, 1, 1927; P. A. M.
Dirac, Proceedings of the Royal Society, A, 113, 621, 1927
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its characteristic value spectrum, i.e., by the elements of is
matrix in the system in which it is itself diagonal.

If S(a'B') is the unitary transformation maitriz from o
system in which o is diagonal to a system in which B is
diagonal then

|S(a'8) | (68)

is the relative probability of finding the value o’ of a when it
is known that the value B’ must be ascribed to f3.

The foregoing assumptions of course apply equally well
to the case of continually varying indices and hence to the
case in which S is found by solution of a Schrodinger
equation.

The detailed discussion of the physical interpretation
of the statistical elements thus introduced into the theory
will be found in the body of the text and especially in
chapter iv. Here it will only be noted that we must add
the express condition that the experiment under con-
sideration actually affords a determination of a’. At first
sight this condition appears trivial; it is, however, essen-
tial, for an application of the foregoing interpretation of
the quantities (68) without consideration of the experi-
ment leading to the measurement of o’ gives rise at once
to logical inconsistencies.

Having established the basis for its physical interpreta-
tion, we proceed to the further development of the gen-
eral transformation theory.

The elements of the transformation matrix .S give prob-
abilities only on forming the squares of their absolute mag-
nitudes; they may themselves be called ‘“probability
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»

amplitudes.” Carrying out successively a transforma-
tion from the system a (the system in which a is diagonal)
to a system 8 and then a transformation from the system
B to the system < gives, since transformations combine
by the rule for matrix multiplication,

S(ay)= D S@RISE) . (69)
.

Thus quite independently of v the probability amplitude
S(a’y’) can always be represented as a linear function of
the set of probability amplitudes S(a’8’). The probability
amplitude for finding o’ regardless of the predetermined
quantity v/, which may be written simply S(a’), is there-
fore, even in the most general case, a linear function of
the elements of the transformation matrix S(a’f’), and
the system 8 may be chosen arbitrarily. In particular 8
may be taken to be the energy, and S(a’) can then always
be expressed in the form

S(a)= zCW’S W'(a'? ) (70)

w’

where the ¢y’s are constants and S w(a’) is the transfor-
mation matrix to the system in which W is diagonal.
While the probabilities Sy(a’) are always constant in
time, referring to a stationary state W', this is not true in
general for |S(a’)|* (i.e., when something other than the
energy is specified). The proper time dependence of S(a”)
may be deduced from the following considerations:
According to (9) each matrix element x(nm) has a time
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21r1.
(Wam Wat . .
factor ¢ * in the system in which the energy

is diagonal. Since on transforming to this system from
any other system

x(nm) = ZS*(a'n)x(a'a.")S(a."m) , (71)

the correct time dependence will be obtained by providing

27

each element S(a’n) with the time factore * e This
is possible since hitherto S(a'%) has contained an arbitrary
phase factor of absolute magnitude 1; from now on it will
be understood that S(a’n)=.Sp(a’) contains this time
factor. _

The most general probability amplitude S(a’), since it
can be expressed in the form (70), must satisfy the equa-
tion HS —SW =o determining the Sp-(a’). Since SW=
—(h/271)(8S/3t) when S has the time factor introduced
above, the equation for S(a”) becomes

S aEesEt e G2

In particular taking a to be a co-ordinate ¢, this becomes
the wave equation of Schrodinger,
hd h 6\!/(4)
H<21rz dq’ >¢( )+ 2mi ) (73)

- . ~y
Characteristic solutions of the form y w/(q) =uw-(q)e * ‘

correspond to the elements Sy-(a’) with the time factor,
and by (70) the most general probability amplitude is

2wt

2T gy
V= cyamge B (74)

w'
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As an example of the application of equation (72) con-
sider again the example of coupled atoms. Suppose a
measurement at time £=o gives the result that atom I is
in state # and atom ITin state . Equation (72) then gives
the variation with time of the matrix S given by equation
(64), in which the time is contained only in the phases
¢q and ¢p. Substitution in equation (72), since the matrix
s of the constant amplitudes satisfies the equation Hs-
sW =o, gives

Hence ¢o = — 2mi/h Wi+ Const. and ¢p= — 2mi/h- Wit +
Const. and the characteristic solutions of equation (70) are

S(nk; a)=Const.Xs(nk; a)e * Wd, etc. The general prob-
ability amplitudes are then by equation (70),

2m 2T
Wit

S(nk) =cus(nk; a)e * Wd—i—cbs(nk; be *°,

. . ~2 T Wt C o =W
S(mi) =cos(mi; a)e *  Fcps(mi; b)e b,

where the ¢’s are constants which may be determined by
the initial conditions. Since in this case the initial condi-
tions are S(nk) =1, S(mi) =0, and the determinant of the
$'s is 1, we readily find

2m 2w

S(nk)=s(mi; b)s(nk; a)e * Vel s(mi; a)s(nk; B)e B "
Mgy 2T

S(mi) = s(mi; b)s(mi; b) [e—z”h_ —e k Wb‘] )
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For the special case of equivalent atoms, where s has
the form (66),

2T 27
Qs ]
S(nm)=%(e R gk >

S(mn)=3% (e_ﬁhﬂ Pk Wbt) .
From this follow the probabilities

| S(nm) [2=%[1+cos 2

A (Wa— Wb)t]

|S(mn)[2=%[1——cos 2}:- (Wa——Wb)t] .

These formulas give the probabilities of finding (nm) or
(mn) as functions of the time. As W,—W, is small to the
order of magnitude of the interaction energy of the atoms,
the probabilities vary only slowly. Shortly after the first
measurement (i e, for small values of #) it is extremely
probable that we find again the configuration (mm). If,
however, the second measurement is made exactly at
time t=%3h(W,—W;), the result will certainly be the
configuration (mn). All of these considerations are valid
only when the system actually remains unperturbed in
the interval between the two measurements; that is,
actually remains governed by equation (72). This condi-
tion is, of course, quite trivial. It is specially mentioned
here, however, as it is of decisive importance for the con-
sistency of the theory.

The interpretation of the transformation matrices as
probability functions just sketched gives a complete
scheme for the application of the mathematics of the
quantum mechanics to all physical problems.
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§ 6. THE CORPUSCULAR CONCEPT FOR RADIATION

The corpuscular theory of radiation is too well known
in its general outlines to require extended discussion at
this point. It is essentially Einstein’s theory of light
quanta according to which radiation can be regarded as
the action of rapidly moving particles (quanta) whose
velocity is always ¢. Energy E and momentum p are re-
lated by the fundamental equation

E=cp, (75)
and the color is given by the quantum relation
- E
=7 -

Light quanta can appear and disappear, so that in con-
tradistinction to the particle picture of matter their num-
ber is variable. No interaction takes place between differ-
ent light quanta (when gravitation is disregarded), but
the interaction between light quanta and matter is re-
sponsible for the phenomena of absorption, emission, and
dispersion.

§ 7. QUANTUM STATISTICS

Consider a system of » identical particles that are en-
tirely indistinguishable from each other (e.g., electrons or
photons). For simplicity it will be assumed that the sys-
tem has only a discrete characteristic value spectrum,
and the interaction between the particles will at first be
neglected. The problem may be treated by first deter-
mining the possible states and corresponding character-
istic functions y¥.(r) for the individual particles and then
considering the distribution of the » particles among these
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states. In order to treat such a statistical distribution it is
necessary to define what constitutes a distinct state of
the system.

In classical statistics (Boltzmann statistics) a distribu-
tion of » particles among » different states has a relative
probability #!, since obviously every permutation of the
n particles represents an independent realization of the
given distribution. In the quantum theory this means
that every distribution of # particles among # different
states corresponds to an #!-fold degenerate term of the
total system. The corresponding #! linearly independent
characteristic functions are obtained by performing the
n! permutations of the 7g, with the a, fixed, in the ex-
pression

Yo, (78 )¥e,(78.) - - . - Ya,(78,) - (76)

Instead of the functions (76) any other system of n!
linearly independent linear aggregates may of course be
used to describe the n-body problem. One is led to such
a system of functions, for example, on attempting to treat
the interaction of the particles as a perturbation. Among
the »! linear aggregates thus obtained two are singled out
by a particularly simple structure:

Vel Welrs) - .« Aua(r) (17)

All
permutations

and the determinant

I\b":(’k)] (1:7 k=I: 2,000, n) . (78)
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The first is unaltered by any interchange of two particles
and is called the “symmetric characteristic function” of
the system; the second only changes its sign on such an
interchange and is called the “antisymmetric character-
istic function.” If it is assumed that the y.’s are normal-
ized, then it is readily shown that the characteristic func-
tions (77) and (78) of the total system are also normalized
if multiplied by V' 1/#! .

These relations are clearly illustrated in the simplest
case of n=2. Corresponding to one particle in state a,
and the other in state a,, there is then a doubly degenerate
term with the two characteristic functions

(1, 2)=;}; [Wa(ra W (2) F e re(r)]
V(1 2)=;}; [Wea(roWa(r) —Ya(r)pa(r)] -

In the first place it is readily seen that no intercombina-
tions can take place between terms with symmetric and
terms with antisymmetric characteristic functions. The
probability of such a transition is always given by an
integral of the form

J1G, 20z, 2)¥e(x, 2)dridr (79)

in which f (1, 2) is a function which is not altered when the
particles are interchanged, since the two particles are in-
distinguishable. If now the two electrons are interchanged
in (79) the value of the integral is clearly unaltered, since
it is only the designation of the variables of integration
that is changed. On the other hand, the sign of ¥.(1, 2)
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is reversed while all other quantities in the integrand re-
main the same. Accordingly (79) must vanish.

A more thorough mathematical investigation based on
the theory of the representation of groups shows that this
special result must be generalized to the following*

The terms of a system of # equal particles may always
be divided into partial systems in such a way that only
the terms belonging to a given partial system can combine
with each other. In particular, there will always occur
two partial systems in one of which the characteristic
functions are symmetric, while in the other they are anti-
symmetric. '

This result remains valid for any interaction between
the particles provided only that the interaction of the
particles is a symmetric function of their co-ordinates.

The fact that intercombinations cannot occur between
two different term systems leaves open the possibility of
introducing further hypotheses which exclude all but one
of these systems from physical significance.

Consider, for example, the symmetric term system
alone. A definite distribution of the particles among the
individual states of the single particles (again neglecting
the interaction) corresponds, in this term system, to only
a single characteristic function. The possibilities that are
represented in the symmetric term system therefore cor-
respond to those states which are distinguished in the
Bose-Einstein? statistics.

In the term system made up of antisymmetric char- .

* E. Wigner, Zeitschrift fur Physik, 40, 883, 1927.

2 S. N. Bose, ibid , 26, 178, 1924; A. Einstein, Berliner Berichte, p. 261,
1924-
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acteristic functions, on the other hand, any function
which corresponds to two particles in the same state nec-
essarily vanishes. This is the expression in the quantum
theory of the Pauli* exclusion of equivalent orbits, which
applies to electrons and protons. The choice of an anti-
symmetric term system corresponds to the use of the
Fermi>-Dirac? statistics.

Quantum statistics thus singles out one term system
from the possible term manifolds of an #-body problem,
of either symmetric or antisymmetric characteristic func-
tions, as the only physically significant one; each term of
the manifold thus singled out represents a distinct state
of the physical system of n-bodies. The first case cor-
responds to the Bose-Einstein statistics, which applies to
light quanta; the second to the Pauli-Fermi-Dirac sta-
tistics. Itisimportant to remember that this formulation
remains valid for any interaction of the particles.

In applying the Pauli exclusion principle to electrons
or protons it must not be forgotten that 7y, in Y.(7:), repre-
sents not only the three space co-ordinates of the kth
particle, but also the fourth variable describing the spin
which can only have the values +% and —3.

The formulation of quantum statistics in the wave
picture will be treated in § 0.

§ 8. THE WAVE CONCEPT FOR MATTER AND
RADIATION: CLASSICAL THEORY

The classical wave theory is that of the de Broglie
waves for matter and of electromagnetic waves for radia-
tion. This section will treat primarily those waves which

*'W. Pauli, Zeitschrift fur Physik, 31, 765, 1925.

2 E. Fermi, 7bid., 36, go2, 1926.
3 P. A. M. Dirac, Proceedings of the Royal Society, A, 112, 661, 1926.
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are associated with the electron (the proton waves can be
treated in an entirely similar manner), though light waves
will also be considered briefly. No attempt will be made
to include relativistic effects, and it is then logical to treat
only electrostatic forces and to neglect magnetic and re-
tardational phenomena.

The proper wave equation for matter waves was first
discovered by Schrodinger,” and is most simply obtained
from the transformation equation (73) of § 5. This gen-
eral Schrodinger equation (73) cannot itself be properly
regarded as a true wave equation, since it is an equation
in 3N-dimensional co-ordinate space for N particles;
however, for V= 1 this space reduces to ordinary 3-space,
and it is therefore reasonable to try to regard the equation
in this special case as the space-time (i.e., the classical)
equation for matter waves. The transformation function
Y(xyz) is then to be considered as a “field scalar.”

For one (corpuscular) electron the total Hamiltonian
is made up of the kinetic energy Ey,=(1/2u)(pi+7p;
+2) and the potential energy Ep= —eV, where ¢ and
u are the charge and mass of the electron respectively and
V is the electrostatic potential. Hence equation (73) in
this case reduces to

h? koY
gen ItV i o=
where V2 is the Laplacian operator (8°/9x%)+(8%/9y?)
+(82/82%). The conjugate complex equation

ok oy oW
: 87r2,uv¢ ey +27ri a

o, (80)

(81)

is implicitly contained in equation (80).
* Annalen der Physik, 79, 361 (1920).
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The mathematical theory of these equations can be re-
garded as a “classical” theory of matter waves, though
of course in this case the interpretation of the mathe-
matics is essentially different from that of the foregoing
sections. The quantities entering into these equations
can all be visualized in terms of space and time just as
can the quantities in the Maxwell equations, since they
are all functions only of the four variables x, vy, z, .

The wave theory does not consider electrons, and e
and p are merely universal constants of the wave equa-
tion. Although equations (80) and (81) were obtained
from the one-electron problem of the corpuscular theory,
they are now in no manner restricted “to apply to one
electron only,” for the phrase is meaningless in the wave
theory. On the contrary they have complete generality
in so far as “waves of negative electricity” are concerned.
From this remark it follows at once that, in contrast to
the quantum theory of the one-electron problem, ¥ no
longer simply represents the potential of the external
forces but also includes the potential of the matter waves
themselves, that is, it takes account of the reaction of one
part of the charge distribution upon another part. This
theory will be as unable to represent the phenomena of
atomic physics as the Maxwell theory. Its value is ex-
clusively heuristic in that it is related to the quantum
theory of waves in the same way that classical mechanics
is related to the quantum theory of particles.

As a first example the case of very small wave ampli-
tude, i.e., very low density of matter, will be treated. It
will assume that the external potential is also zero, so that
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V vanishes to the requisite approximation. Then equa-
tion (80) becomes

P oo, h oY
szpv 27t (82)

which possesses the solution

E%i(PzZ+Pyﬂ+Pzz‘E‘)
=e

v

where
T ot p2 1 2y L 42
E=;; (Pz+?y+?z)"2# P .

These have the form of plane waves, the direction of the
wave normal being given by ps, py, ps and the wave-
length and frequency being

h E
ST (85)

The phase velocity v, of the waves is
E p
=—=-", 8
Vg » 2 ( 4)

while the group velocity 7, can be calculated from ele-
mentary optical principles to be

dE )
= 4 . (8s)

According to de Broglie,* these are the equations which
govern the interference of matter waves for very low

1. de Broglie, Annales de Physique, 10 Série, 2, 22, 1925; Ondes €t
Mouvement, Paris, 1926. .
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density. The relationship between group velocity and
wave-length permits an association of wave-length to
moving complexes of negative electricity without in any
way appealing to the particle picture. This theory of de
Broglie therefore gives a simple qualitative account of the
experiments of Davisson and Germer, Thomson, Rupp,
and others. This is precisely analogous to the success of
the classical mechanics in explaining the Wilson photo-
graphs, the deflection of cathode rays by electric fields,
etc. Nevertheless one can regard these achievements of
classical theories only as proof of the similarity of the
classical and quantum theories, in the sense of the cor-
respondence principle; for the answer to all quantitative
questions an appeal must be made to the exact quantum
theory.

Before passing on to the quantum theory of waves it
will be necessary to elaborate this classical wave theory
somewhat further. For this purpose’ we return to the
wave equation (8o) which is not restricted to low density
of matter, and make the following assumptions for the
interpretation of the wave function y:

Charge density: p=—eJ*y,

: . —_— Lh_ *! —_ *
Current density: o= prm WYY —yVy*) , (86)

Energy density: u=—h Vy*-Vy .

81
The strict justification of these assumptions can be found

only in the later developments of the quantum theory of
waves. None the less they are plausible at this point be-
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cause the quantities p, o, and % thus introduced obey by
virtue of equations (80) and (81) the following conserva-
tion laws of the kind which must be demanded of any

classical theory:

d
Conservation of charge: & Jpdv=o0, (87a)
. d -
Conservation of momentum: it f odv=—e f VVy*ydv, (87b)
d d
Conservation of energy: -, fudv= fev ot @*)dv.  (87¢)

In these equations dv is the volume element and the in-
tegrals are over all space. It is assumed that y vanishes
over the infinite sphere so that whenever Green’s theorem
is applied the surface integral vanishes. To deduce (87a)
multiply equation (80) by y¥* and equation (81) by ¢,
subtract the two equations thus obtained, integrate over
all space and apply Green’s theorem. To deduce (87b)
multiply equation (80) by dy*/dx, differentiate equation
(81) with respect to x, multiply by ¥, and then subtract
and integrate as before. Finally, (87¢) is deduced in the
same manner as (87a) except that the equations are added
instead of subtracted.

Besides the waves of negative electricity other charges
may be present in space, such as atomic nuclei, charged
condensers, etc. The density of these charges will be
designated by p,. The total electric potential must then
be determined by Poisson’s equation V:E=4x(o+p,), or

V2V =—4m(p+p) . (88)

For the purpose of the quantum theory of wave fields
to be developed in the next sections it is necessary to note
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that equations (80), (81), and (88) can all three be de-
duced from a single variation principle. The proper
Lagrangian function is seen to be

__ w. oy B[O . OYF
L= 8mu vy 47ri<8t 4 ot ¢>
(89)

teVyr—pV+ 1 VVVV,
8w
since on varying ¢ and * the condition

{{L dv dt = Extremum

gives the equations (80) and (81), respectively, and on
varying V gives equation (88).

The total energy of the system is composed of the
energy of the matter waves and that of the electromag-
netic field. Hence the total energy density .7’ is given by
the equation

n? I
= ngp VY * Uy 4 8 vv.vv, (90)

and the conservation law

H = [ A dv=_Const. (o1)

is readily proved, provided p, is independent of the time.
The proof is as follows: From equations (go), (88), and

(87¢)
dH u 1 d
"dt'_fdv[ét " |4 i (VV-VV)] )

- f w[%-v?, (ew*)] ,

=0 .
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This self-consistent space-time theory, built according
to the model of a classical field theory, does not as yet
contain a single corpuscular element. This is evident
above all from the fact that the total charge of the system

{pdo=—efP*ydv (92)

can take on any desired value, and not merely the values
—e, —2e, —3¢, . ..., as must be required of any true
theory of atomic (or quantized) systems. Furthermore,
the total energy and the characteristic frequencies can
also have any value, since the differential equations are
non-linear and the characteristic frequencies therefore de-
pend on the amplitudes of y. In spite of these defects
(which are those of any classical theory), the present
theory can be used to account for atomic phenomena in a
manner precisely analogous to that used by Bohr and
Sommerfeld in applying the classical corpuscular theory.
Just as these authors introduced the conditions [ p;dg.=
n.h into classical mechanics, so Hartree® has been able to
give an approximate account of atomic spectra by impos-
ing the “quantum conditions”

[Vihdv=m; (93)

in the present field theory.? The quantity », is an integer,
and the suffix & refers to a characteristic vibration of the
system. Hartree is able to obtain satisfactory results only
1 D. R. Hartree, Proceedings of the Cambridge Philosophical Society,
24, 89, 1928.
2 Hartree has shown that satisfactory results are obtained only if the

energy of the interaction of the electron with its own field is subtracted
from"the total energy.
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upon neglecting the periodic time-variations in V, which
are produced by the periodic character of . Thisis analo-
gous to the difficulties encountered by the Bohr-Sommer-
feld theory. It is characteristic that this field theory is
quite as difficult to treat mathematically as the classical
mechanics; at any rate it is far more difficult than the
quantum theory of either particles or waves.

It is probably unnecessary to enter into a detailed ac-
count of the classical theory of radiation, since this is the
well-known Maxwell theory. It contains no quantum ele-
ment whatsoever, as witnessed by the fact that the
energy [(E*+H?)dv is continuously variable. Again the
difficulty may be avoided by quantum conditions like
those of Hartree, which make possible only discontinuous
energy changes of amount %v; this does not, however, lead
to a quantum theory of the field.

§ 9. QUANTUM THEORY OF WAVE FIELDS'

The mathematical apparatus necessary for the quan-
tum theory of wave fields may be put in a form complete-
ly analogous to that of the quantum mechanics of par-
ticles provided the classical wave theory is first brought
into a form analogous to the Hamiltonian form of clas-
sical mechanics. The present section treats the general
problem of a classical wave theory that can be derived
from a variation principle. The Lagrangian function of
this variation principle may contain a number of wave
functions Y. =v.(%, v, 3, §), (a=1, 2, 3,. . . . )[e.g., ¥, ¥*,
and V of § 8], their first order space derivatives (9y./dx,)

1 P. Jordan and W. Pauli, Zeitschrift fir Physik, 47, 151, 1928, W.
Heisenberg and W. Pauli, bid., 56, 1, 1929; 59, 168, 1930.
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(4=1, 2,3forx,y, z), and their first-order time derivatives
(8Yo/0t) =y.. The variation principle will then be

ff 1#;, e ,1,&0. dv dt = Extremum, (94)

and the wave equations are the corresponding Eulerian
equations

oL 9 oL
a‘pa Zax@ <3¢u> Taigg. 0 (aTmEe-o). (95)
ox

The classical mechanics of a system of particles may be
derived entirely from Hamilton’s variation principle

fL(qL, ¢r)dt = Extremum. (96)

The variation principle (94) for a continuous field may be
made formally similar to the variation principle (96) for a
discrete set of particles by introducing the quantity

- e -
L =fL<¢°-y 5‘50: ) ‘p"‘)dv ’ (97)
and then writing (94) in the form
f <¢a, %‘& , \l;a>dt = Extremum. (08)

Now while L(gs, ¢:) depends on the g, for all values of
the index &, L[, (6¥/02.), Y] is determined by the values
of ¥, and ¢, at all points of space. Hence the analogy
between the two quantities is complete if the points P of
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the space be regarded as the indices of the wave function. The
complete wave function may then be regarded as the
complex of quantities ¥.(P) dependent on two kinds of
indices: a discrete set a and a continuously variable set
P. (P, of course, takes the place of the three indices
%, Y, Z')

The Eulerian equations (95) may now be expressed in
terms of the Lagrangian L, which is the analogue of the
Lagrangian for a system of particles. As the analogue of
the ordinary derivative (8/d¢x)L(q., ¢.), which may be
written

0L _ yim L@H3ulg, ) L(g, §)
aQL A411=o Agq

we may define the derivative
- N oe(P) .,
SZ[wate) , 2 E) )|
Sa(P)

Ay = oA‘l/

lim '“‘{ Y8(P')+0e(P—P') AY(P) ,
¢ (99)
a

. Wa(P)+5es5(P— PP, \#'p(P’)]]
—2[va@), LD o) } :

The symbol §(P—P’) stands for a function analogous to
Dirac’s é-function (cf. § 2) having the properties
§(P—P"=o0 when P=P’,

and (100)
f&(P-—-P’)dv=1 oro,
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according to whether the volume of integration contains
or does not contain the point 2. From the definition (97)
of L it is readily seen that

6L oL
e OVa Zax, azpn) (zo1)
ax,
Since it is obvious that
8L _dL
Sja O
the Eulerian equations become
8L o &L (102)

W 0 og.

in complete analogy to the Lagrangian equations of clas-
sical mechanics.

The transition from the Lagrangian to the Hamiltonian
form in classical particle mechanics is brought about by
introducing the Hamiltonian

H= Zpqu-—L , (103)
k

where p.=9dL/d¢:; the equations then take the Hamil-
tonian form (1). The same procedure will now be used
for the wave equations (95). A conjugate II, to the wave
function ¥, may be introduced by the relation

Hy=—=—, (104)
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and the Hamiltonian will then be, by analogy to (103),

ﬁ=fZIIa¢;adv—Z . (105)

Analogously to the relations between L and L,

H={Hdv (106)
if
H= zILn[;,,—L . (107)
The wave equations (95) now take the Hamiltonian form
) 6H
%_BIL s IL:——S;[/: . (108)

Conservation laws may be deduced as in particle me-
chanics. Directly from (108) follows the conservation of
energy,

—l-i-t—___o ) (109)

while the equations

dthHaa¢u dv=o0 (i=1,2,3), (110)

expressing the conservation of momentum follow from
(108) and (101), since

d e _ 0 SH Y. 0H
at f deH“ Er f d”[n“ ax; 81, 9% 5%] ’
- z 3H¢ ﬁ . 0H
ax, e’
= fdv 320"
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In both cases it is assumed that H contains no function of
space and time other than IL,, ¥,, and their derivatives.

The transition from classical theory to quantum theory
can now be accomplished without difficulty by analogy
to the procedure of § 1. Just as the co-ordinates were
there replaced by matrices, so here the wave functions
may be replaced by non-commutative variables, which
can be represented as matrices in a suitably chosen Hil-
bert space. (Such quantities have been called “g-num-
bers” by Dirac.) To the differential equations (108) must
then be added the exchange relations analogous to (15):

IL(P)Ys(P") —¥s(P") Lo (P) = 5o58(P—P') Z];Fi ’

IL(P)TIs (P') — I(P) IL(P) =o , (111)

Ya(P)Ys(P") — (P WYu(P) =0 .

In this quantum theory of wave fields the space-time co-

ordinates %, y, z, ¢ are thus parameters (like the time in

the particle theory); they are therefore numbers in the

ordinary sense (called “c-members” by Dirac), and of

course commute with each other and all other quantities.
The conservation laws

H=Const., fz 1, gﬁf dv=_Const. (112)

remain valid, as is readily proved with the help of rela-
tions (111).

The simplest method for the mathematical treatment
of a wave problem defined by the equations (108) and
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(r11) is to develop the wave functions in a suitably
chosen set of orthogonal function #;(P): -

Vo= D Ou(P), T.= > b(ui(P). (113)

The #,(P) are ordinary ¢-numbers and the coefficients a,,
b, must then be regarded as g-numbers dependent on the
time.

In order that ¢, and II, when written in this form shall
obey the exchange relations (111), the ¢, and &, must
satisfy the exchange relations

b,ar-—arb,=i Ors 4
2T

i
sy — 0,0, =0 ,

bsb,—bbs=0 ,

(114)

which are formally analogous to equations (15). This is
readily proved by substituting the developments (113) in
equation (111), multiplying both sides by %&(P)u5(P"), in-
tegrating over P and P’ and summing over a and (8. In
the integration use must be made of the orthogonality
relations for the #.:

fd‘l)}’ Z uL(P)us(P) =0os .

The Hamiltonian H and the equations of motion (108)
may now be expressed in terms of the a, and b,. The
methods previously described for solution of a quantum
dynamical problem are then available here—in fact, the
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only difference between the quantum theory of wave
fields and of particles is that in the former the number of
variables is infinite while in the latter it is finite.

§ 10. APPLICATION TO WAVES OF NEGATIVE CHARGE

The method of the last section will now be applied to
the waves of negative charge treated in § 8. The classical
Lagrangian is then

7 gyx. L yy.
L=——8—1rz—” \ V¢+81r VV-VV4eVy*y
3 A
V= 41rz<6t V- ‘b) :

Corresponding to the division of the charge density into
that of the given external charges (p,) and that of the in-
ternal charges (p) the potential V' may be written V=
Vo+V,, where

ViVo=—4mp0 , . VV=4mey™y . (115)

The foregoing Lagrangian may then be modified to a
more convenient form by adding the total derivatives
(h/471)(3/88)(Y*¢) and — (1/4m)V-(V.VV,) and discard-
ing terms involving only the known function p,. This
does not alter the variation problem, and in the Lagran-
gian

h oy

*
226t‘l/+ YV VVs

L=—

8 V-

+dm+nWw (116)

thus obtained only ¢, ¢* and V, are to be varied.
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A slight difficulty arises because of the fact that the
time derivative of V; does not occur in (116), thus making
it impossible to introduce the exchange relations (111),
since the conjugate to V, defined by equation (104) would
vanish. The dilemma is easily avoided, however, by not
regarding V; as an independent wave function but rather
treating the equation resulting from the variation of V', as
a secondary condition. With its help V; may be expressed
as a function of ¥ and ¥*. Since the equation obtained
by varying V., is V*V.=4mey*y, V. is given in terms of
¢ and ¢* by the well-known solution of this equation:

V(P)=—ef G(PP)W*(P')y(P')dvpr (117)

where G(PP’) is the Green’s function (in general, simply
1/7pp) of the region in which the waves occur. On sub-
stituting this in the Lagrangian (116) the result is, after
a slight modification involving again the addition of total
derivatives,

i _h

L=—c W*- WY

*_ *,
81 2mi 3¢ yr—eVop™y

i (118)
=2 [amev e EWEICEP)

The momentum conjugate to ¢ is [cf. eq. (104)]

and consequently the Hamiltonian is

W_

__t s
H= 27ri¢ ot ’
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giving

ﬁzfdv[ B Gyr. vy—eV, ¢*¢]
8mu

2 (119)
+%ffvava'G‘(PP')x[/*(P),’p(P),#*(P/)\P(P;) )

From this classical Hamiltonian form the transition to
quantum theory may be made as in § 9, by introducing
the exchange relations

YPWH(P) —*(P W (P)=56(P—P') , )
Y(PW(P)—y(PW(P) =0, (120)
PHPWHP) —y*(P)W*P) =0 .

The Hamiltonian may again be taken over from the ex-
pression (119) of the classical theory. However, the order
of factors, which is now of importance, is not determined
in this way; in fact, the correct form, in so far as it
involves the order of factors, can only be determined
empirically. It has been found by Jordan and Klein® that
the proper Hamiltonian for matter waves is

ﬁ=fdv[§%%[/* Vy—eV, ¢*¢]
) (121)
+2 [ [ awawc@rr@wemene.

It should be remarked that the definition of Y* as the
conjugate of ¥ requires some modification when ¢ is a
_g-number. If ¢ is given as a function of Hermitian ma-

1 P. Jordan and O. Klein, Zeitschrift fur Physik, 45, 751, 1927.
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trices, then y* is obtained from it by replacing ¢ by —2
and also interchanging the order of factors, e.g.,

(p9)*=g"p* .
In this quantum theory of matter waves the total
charge
—efdw*y

is again a constant in time, as is most readily proved by

showing that it commutes with H. As must also be the
case, its characteristic values are integral multiples of —e.
This may be shown in the following manner. Asin § g, if

we put
V=2 0w®),  ¥*=D atuP),

T (122)
f Uyths V=05 ,

the a, and o satisfy the exchange relations

ara:r.= - a:ar = Sra )
a,0,— a,a,=0 , (z23)

afa¥—a¥at=o,

analogous to equations (114). The foregoing exchange re-
lations may be satisfied by setting
_awi 2 o,

oy
a=¢ * N}, a¥=Nlet | (124)

provided N, and ©, are Hermitian operators satisfying
the exchange relations

erN.—Nper-—_‘ar‘ .
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It is then possible to prove that

2rt

R ) =) R (x25)

and that the characteristic values of the NV, are positive
integers. It then follows from equation (x 22) that

e[dvglz*zﬁ: fdvzlzi"asu,us
=82a;“as= ZN, .

The quantum theory of matter waves thus accounts
for the existence of the electron. At the same time it is
evident that the Hartree “quantum conditions” g¢3) are
the analogue, in the sense of the correspondence prin-
ciple, of the exchange relations (123). Since ZNV, is a con-
stant of integration of the equations of motion it is pos-
sible to consider separately those stationary states for
which this quantity has the numerical value N. (It may
be remarked that SN, is a constant even when V, depends
on the time.) It has been shown by Jordan and Klein (cf.
§ 11)* that the solutions of the wave problem with Ham-
iltonian (119) for which this condition is fulfilled are
mathematically and physically equivalent to the solutions
of the N-electron problem of the corpuscular theory, i.e.,
to the solutions of the Schrédinger equation (47). How-
ever, they do not correspond to all the solutions of this
equation but only to those of the possible solutions in
which the transformation function y is symmetric in the

* Ibid.
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co-ordinates of the electrons. These solutions themselves
form a closed term system, namely, that one for which
the Bose-Einstein statistics is valid. The quantum theory
of matter waves [especially the exchange relations (111)]
thus requires the Bose-Einstein statistics for the cor-
responding particle picture.

The exchange relations (111) are, however, only one
possibility out of many. Another equally justifiable set is
obtained by changing the minus sign into a plus sign, so
that the wave functions satisfy the equations

Y(PWH(P)H*(PW(P)=6(P—PF) ,
Y(PW(LP)+Y(P)W(P)=o0, (126)
VEPWHP) Y (P WHP) =0 .

According to Jordan and Wigner,* the quantum theory of
waves based on these exchange relations is equivalent to
the antisymmetric solutions of the Schrodinger equation;
that is, these relations lead to the Pauli exclusion prin-
ciple and the corresponding Fermi-Dirac statistics.

§ II. PROOF OF THE MATHEMATICAL EQUIVALENCE
OF THE QUANTUM THEORY OF PARTICLES
AND OF WAVES

The problem of quantum theory centers on the fact
that the particle picture and the wave picture are merely
two different aspects of one and the same physical reality.
Although this is a problem of purely physical nature it is
satisfying to find a counterpart to this duality in the

t P. Jordan and E. Wigner, Zeitschrift fur Physik, 47, 631, 1928.
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mathematical apparatus of the theory. The analogy con-
sists in the fact that one and the same set of mathematical
equations can be interpreted at will in terms of either
plcture

The proof of this assertion may be made perfectly gen-
eral without regard to the particular form of Hamiltonian
considered. The Schrodinger equation of the particle pic-
ture for N equivalent particles may be written

{zon_l_ Z orm4 - 2 z at}(p(Xx, ., xy)=o0 (127)

n>m

where O" is an operator acting only on the space co-
ordinates ¥, of the nth particle, and O™ one acting on the
co-ordinates of both the n#th and mth. Furthermore, it
may be assumed that a certain system of orthogonal func-
tions #,(x) has been found, in terms of which all functions
in 3-space satisfying the boundary conditions can be ex-
panded; it will then be possible to expand ¢(xs, . ., xw)
in terms of products of these functions:

—
s(Xey . -y XN)= L b(rsy ooy 7Ny Dun,(X0) .+t (xw) . (128)
T N

The quantities [6(r; . . . . 7y, 1) may be regarded as de-
termining the probability that the particle 1 is in the 7,-
state, particle 2 in the 7,-state, etc. If this expression for
o be substituted in equation (127), the result multiplied
by wg(x)u,(xs) . . . . u5,(xy) and then integrated over
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X1, %2, - - . ., Xy there results the following differential
equation for the &’s:

h 9 w
o= 2 b5y 5y ., 5w, 1)

+Z Zogn,mb (S1e ?m..58) L(I29)
+220§n@m;,nrmb(s, cTn T SN)F e

n>m rarm J

Use has here been made of the orthogonality relations
for the ,(x) and the quantities

0?ﬂ,ﬂ= f usnO”u,nd'un ,
0% - virn = f [he the O™ty 14y A0y

are the elements of the matrices representing the cor-
responding operators in the co-ordinate system character-
ized by the functions #%,(x). Because of the symmetry of
the Hamiltonian in the co-ordinates of the particles, the
numerical values of the matrix elements depend only on
the indices 7 and s, and not explicitly on # and m. In the
case of the Bose-Einstein statistics the b(s, . . . . sy) are
symmetric in the quantum numbers of the particles, so
that they can also be expressed as functions of the num-
ber N, of particles in the rth state. Since the a priori prob-
ability of finding NV, particles in the first state, NV, in the
second, etc., is then given by Z*=N!/(N,!N,! . .. .), it
is convenient to define the quantity

b(Ny Naw...)=2Zb(ry, 72y . ..., N). (130)
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2T

The operators ¢ B of equation (125) which change N,
o N,+1 are useful here; with their aid equation (129)
may be written

2my

5 (8:—9;)
(a2 yon

2m

+22N:(Ns’-5ss)oss rr’€ h

ss',rr’

+....}%b(N,,N2,....).

(65+04—08,—6,)

On multiplying this equation from the left by Z and
commuting 1/Z to the left equation (125) yields

{2 2 6t+ ZN*(N et 1)0ue

+1 2 N (Vg =860 (N, 1 —brs—brg)’*
s’ 1! > (I3I)
2% (0,+0,—0,—0, ,)}

h * (0,—9,)

(N 140 —Brs—Bry) - €
Oy Noy o v v )

We turn now to the corresponding problem expressed
in the wave theory; the Hamiltonjan corresponding to
(127) is then

A = [dvopy30Pyp+3f [ dopdupy BAEOP PYppp+ - - - -

By (122) this may also be written

H= E a:‘arosr'{_% E a;ka:’arar’o,ss’, rr'+ tet

’

s,7 ss’, rr’
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Then on substituting equations (124) in the equation

HS+~h— s _ =o,

2wt Ot

we obtain

(9 —6,)Arh
{2 z6t+stO“" h "N

} Doy me i,
+%§ Nseh soss’;rr’eh rJV;e n N,}'

ss’, rr’

4. ..}S(N,,Nz, ..... ).

. ——© . .
Commutation of the operators e* = to the right gives

) ]
= (0,-8,)

= 3 3
o= {2 - at+N s(V,—b8s+1)0se

+% 2N“;<Ns'—'688')*<NT+I—Brs"‘ars)} ¢ (132 )

ss’;rr!

2xi oo
(NT,+I+57’T’—5r'a_‘6r’s')*eh' (Os+0y =6, 91)}5 .

This equation is identical with equation (131), and the
mathematical equivalence of the particle and wave pic-
tures has therefore been proved. A similar proof may be
given in the case of the Pauli exclusion principle and the
exchange relations (126).

Although the classical theories of the corpuscular and
wave pictures are so entirely different, both physically
and mathematically, the quantum theories of the two are
identical.
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§ I2. APPLICATION TO THE THEORY OF RADIATION®

It will be recalled that the Maxwell equations, which
govern the classical wave theory of radiation, can be de-
rived by variation of the potentials in the Lagrangian

4
I E 4 F)
L=y (& H)—{—;q)asa.

The s.(a=1, 2, 3, 4) are the components of the 4-current
density, the &, the 4-potentials (®,=1®,, x,=1ct); hence
the Lagrangian becomes, when written explicitly in terms
of the potentials,

SIS (198 0%\ 9%, _ 9%r\?
L~81r|:2zt<c a1 +ax,> z>Zk<axk axz”

+ Zéasa .

a

(133)

(In this and the following equations Latin indices run
from 1 to 3, Greek indices from 1 to 4.)
The momentum conjugate to ®, is, by (104),

oL 1 (194%, 9%\ _ 1
<23t— 6x¢>—47rcE“ (134)

Since the Bose-Einstein statistics applies to light quanta,
the proper exchange relations are

E.(P)®«(P") —®a(P")E.(P) = — 2kci §(P— P')b,a ,

*'W. Heisenberg and W. Pauli, Zestschrift fur Physik, 56, 1, 1920.
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which give on differentiating
E.P)E,(P)—E,(P")E,(P)=o0,
H.(P)H,(P')—H\(P)H.,(P)=o0,
E.(P)H,(P")—H(P")H ,(P) = — 2h¢

(135)
S 98(P—P")

i b
where 1, 7, k is any cyclic permutation of 1, 2, 3.

A difficulty arises from the circumstance that &, does
not occur in the Lagrangian; this affects, however, only
the exchange relations between potentials and field com-
ponents, and not the exchange relations (133).

If the ®, be developed in a set of suitably chosen
orthogonal functions (e.g., standing waves in an in-
closure), then the energy content of a vibration of fre-
quency » becomes an integral multiple of Av. Dirac’ has
shown that this makes it possible to consider the number
of light quanta in each state as the variables of the sys-
tem; this constitutes the link with the particle picture.

1 Proceedings of the Royal Society, A, 114, 710, 1927.
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